670 research outputs found

    Vegetation structure and floristics of granite landforms in the South-west Slopes of New South Wales

    No full text
    We describe the natural vegetation structure and floristics of 44 small-sized granite outcrops (inselbergs) in agricultural landscapes in the South-west Slopes (SWS) bioregion of New South Wales (35Âș 26’ S, 147Âș 23’ E to 35Âș 58’ S, 146Âș 59’E) and their relationships with geomorphology. We provide a list of 196 species (117 natives and 79 exotics). We found that structurally complex outcrops supported a greater diversity of native ground cover species and fewer exotic species than structurally simple outcrops. Tor landforms lacked vegetation structural complexity and were deficient in native shrubs, mid-storey and over-storey species but typically supported exotic grasses and broadleaved exotic weeds. Floristic composition differed among landforms and cluster analysis revealed highly dissimilar native plant communities among outcrops. Our study highlights the need to rehabilitate tor landforms and manage a broad spectrum of outcrops to conserve floristic diversity in agricultural landscapes. Selecting genetically diverse species for replanting, considering the density and spatial arrangement of plantings, and controlling invasive plants and feral herbivorous animals are fundamental issues in restoring granite outcrop vegetation in the SWS bioregion

    Evolution of Initiation Rites During the Austronesian Dispersal

    Get PDF
    As adaptive systems, kinship and its accompanying rules have co-evolved with elements of complex societies, including wealth inheritance, subsistence, and power relations. Here we consider an aspect of kinship evolution in the Austronesian dispersal that began from about 5500 BP in Taiwan, reaching Melanesia about 3200 BP, and dispersing into Micronesia by 1500 BP. Previous, foundational work has used phylogenetic comparative methods and ethnolinguistic information to infer matrilocal residence in proto-Austronesian societies. Here we apply Bayesian phylogenetic analyses to a data set on Austronesian societies that combines existing data on marital residence systems with a new set of ethnographic data, introduced here, on initiation rites. Transition likelihoods between cultural-trait combinations were modeled on an ensemble of 1000 possible Austronesian language trees, using Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) simulations. Compared against a baseline phylogenetic model of independent evolution, a phylogenetic model of correlated evolution between female and male initiation rites is substantially more likely (log Bayes factor: 17.9). This indicates, over the generations of Austronesian dispersal, initiation rites were culturally stable when both female and male rites were in the same state (both present or both absent), yet relatively unstable for female-only rites. The results indicate correlated phylogeographic evolution of cultural initiation rites in the prehistoric dispersal of Austronesian societies across the Pacific. Once acquired, male initiation rites were more resilient than female-only rites among Austronesian societies

    Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas

    Get PDF
    We compared two approaches to administration of groundwater law on a hydrologic model of the North Canadian River, an alluvial aquifer in northwestern Oklahoma. Oklahoma limits pumping rates to retain 50% aquifer saturated thickness after 20 years of groundwater use. The Texas Panhandle Groundwater Conservation District’s (GCD) rules limit pumping to a rate that consumes no more than 50% of saturated thickness in 50 years, with reevaluation and readjustment of permits every 5 years. Using a hydrologic model (MODFLOW), we simulated river-groundwater interaction and aquifer dynamics under increasing levels of ‘‘development’’ (i.e., increasing groundwater withdrawals). Oklahoma’s approach initially would limit groundwater extraction more than the GCD approach, but the GCD approach would be more protective in the long run. Under Oklahoma rules more than half of aquifer storage would be depleted when development reaches 65%. Reevaluation of permits under the Texas Panhandle GCD approach would severely limit pumping as the 50% level is approached. Both Oklahoma and Texas Panhandle GCD approaches would deplete alluvial base flow at approximately 10% development. Results suggest periodic review of permits could protect aquifer storage and river base flow. Modeling total aquifer storage is more sensitive to recharge rate and aquifer hydraulic conductivity than to specific yield, while river leakage is most sensitive to aquifer hydraulic conductivity followed by specific yield

    Non-invasive nuclear myocardial perfusion imaging improves the diagnostic yield of invasive coronary angiography

    Get PDF
    Aims Several studies reported on the moderate diagnostic yield of elective invasive coronary angiography (ICA) regarding the presence of coronary artery disease (CAD), but limited data are available on how prior testing for ischaemia may contribute to improve the diagnostic yield in an every-day clinical setting. This study aimed to assess the value and use of cardiac myocardial perfusion single photon emission computed tomography (MPS) in patient selection prior to elective ICA. Methods and results The rate of MPS within 90 days prior to elective ICA was assessed and the non-invasive test results were correlated with the presence of obstructive CAD on ICA (defined as stenosis of ≄50% of a major epicardial coronary vessel). Multivariate logistic regression analysis was performed to identify predictors of obstructive CAD. A total of 7530 consecutive patients were included. At catheterization, 3819 (50.7%) were diagnosed as having obstructive CAD. Patients with a positive result on MPS (performed in 23.5% of patients) were significantly more likely to have obstructive CAD as assessed by ICA than those who did not undergo non-invasive testing (74.4 vs. 45.6%, P < 0.001). Furthermore, a pathological MPS result was a strong, independent predictor for CAD findings among traditional risk factors and symptoms. Conclusion In an every-day clinical setting, the use of MPS substantially increases the diagnostic yield of elective ICA and provides incremental value over clinical risk factors and symptoms in predicting obstructive CAD, thus emphasizing its importance in the decision-making process leading to the use of diagnostic catheterizatio

    Extinction risk of the world's freshwater mammals

    Get PDF
    The continued loss of freshwater habitats poses a significant threat to global biodiversity. We reviewed the extinction risk of 166 freshwater aquatic and semiaquatic mammals—a group rarely documented as a collective. We used the International Union for the Conservation of Nature Red List of Threatened Species categories as of December 2021 to determine extinction risk. Extinction risk was then compared among taxonomic groups, geographic areas, and biological traits. Thirty percent of all freshwater mammals were listed as threatened. Decreasing population trends were common (44.0%), including a greater rate of decline (3.6% in 20 years) than for mammals or freshwater species as a whole. Aquatic freshwater mammals were at a greater risk of extinction than semiaquatic freshwater mammals (95% CI –7.20 to –1.11). Twenty-nine species were data deficient or not evaluated. Large species (95% CI 0.01 to 0.03) with large dispersal distances (95% CI 0.03 to 0.15) had a higher risk of extinction than small species with small dispersal distances. The number of threatening processes associated with a species compounded their risk of extinction (95% CI 0.28 to 0.77). Hunting, land clearing for logging and agriculture, pollution, residential development, and habitat modification or destruction from dams and water management posed the greatest threats to these species. The basic life-history traits of many species were poorly known, highlighting the need for more research. Conservation of freshwater mammals requires a host of management actions centered around increased protection of riparian areas and more conscientious water management to aid the recovery of threatened species

    Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation

    Get PDF
    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high–molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high–molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility

    On the Orbital Period of the New Cataclysmic Variable EUVE J2115-586

    Get PDF
    We have obtained phase-resolved spectroscopy (3660-6040 Å) of the recently discovered cataclysmic variable EUVE J21 15-586 using the 74-inch telescope at Mount Stromlo Observatory. The radial velocity is modulated over a period of 110.8 min with a possible one-cycle-per-day alias of 102.8 min, and a semiamplitude of ≍270 km s-1 at HÎČ and ≍390 km s-1 at He II λ4686. The spectroscopic appearance (H I Balmer, Ca II, He I, He II emission lines), the orbital period, and the velocity amplitude indicate that this cataclysmic variable is probably an AM Her type; the absence of cyclotron humps indicates a low intensity magnetic field (B\u3c20 MG). Extreme ultraviolet emission phased at the orbital period shows evidence of variability, but additional EUV/soft x-ray observations are recommended
    • 

    corecore