1,219 research outputs found

    Synchronization properties of self-sustained mechanical oscillators

    Get PDF
    We study, both analytically and numerically, the dynamics of mechanical oscillators kept in motion by a feedback force, which is generated electronically from a signal produced by the oscillators themselves. This kind of self-sustained systems may become standard in the design of frequency-control devices at microscopic scales. Our analysis is thus focused on their synchronization properties under the action of external forces, and on the joint dynamics of two to many coupled oscillators. Existence and stability of synchronized motion are assessed in terms of the mechanical properties of individual oscillators --namely, their natural frequencies and damping coefficients-- and synchronization frequencies are determined. Similarities and differences with synchronization phenomena in other coupled oscillating systems are emphasized.Comment: To appear in Phys. Rev.

    Constraints on the radio loud/radio quiet dichotomy from the fundamental plane

    Get PDF
    The fundamental plane for black hole activity constitutes a tight correlation between jet power, X-ray luminosity, and black hole mass. Under the assumption that a Blandford-Znajek-type mechanism, which relies on black hole spin, contributes non-negligibly to jet production, the sufficiently small scatter in the fundamental plane shows that black hole spin differences of \midΔ\Deltaa\mid \sim1 are not typical among the active galactic nuclei population. If - as it seems - radio loud and radio quiet objects are both faithful to the fundamental plane, models of black hole accretion in which the radio loud/radio quiet dichotomy is based on a spin dichotomy of a\sim1/a\sim0, respectively, are difficult to reconcile with the observations. We show how recent theoretical work based on differences in accretion flow orientation between retrograde and prograde, accommodates a small scatter in the fundamental plane for objects that do have non-negligible differences in black hole spin values. We also show that the dichotomy in spin between the most radio loud and the most radio quiet involves \midΔ\Deltaa\mid \approx0. And, finally, we show how the picture that produces compatibility with the fundamental plane, also allows one to interpret other otherwise puzzling observations of jets across the mass scale including 1) the recently observed inverse relation between radio and X-rays at higher Eddington ratios in both black hole X-ray binaries as well as active galactic nuclei and 2) the apparent contradiction between jet power and black hole spin observed in X-ray hard and transitory burst states in X-ray binaries.Comment: 8 pages, 1 figure, accepted in MNRA

    X-ray diffraction from shock-loaded polycrystals

    Full text link
    X-ray diffraction was demonstrated from shock-compressed polycrystalline metal on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25 to 125 microns thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, and the beam was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes

    Thermal states of the Kitaev honeycomb model: a Bures metric analysis

    Full text link
    We analyze the Bures metric over the canonical thermal states for the Kitaev honeycomb mode. In this way the effects of finite temperature on topological phase transitions can be studied. Different regions in the parameter space of the model can be clearly identified in terms of different temperature scaling behavior of the Bures metric tensor. Furthermore, we show a simple relation between the metric elements and the crossover temperature between the quasi-critical and the quasi-classical regions. These results extend the ones of [29,30] to finite temperatures.Comment: 6 pages, 2 figure

    New methods for finding disease-susceptibility genes: impact and potential

    Get PDF
    Improved techniques for defining disease-gene location and evaluating the biological candidacy of regional transcripts will hasten disease-gene discovery

    Computational analysis of unassigned high-quality MS/MS spectra in proteomic data sets

    Full text link
    In a typical shotgun proteomics experiment, a significant number of high-quality MS/MS spectra remain “unassigned.” The main focus of this work is to improve our understanding of various sources of unassigned high-quality spectra. To achieve this, we designed an iterative computational approach for more efficient interrogation of MS/MS data. The method involves multiple stages of database searching with different search parameters, spectral library searching, blind searching for modified peptides, and genomic database searching. The method is applied to a large publicly available shotgun proteomic data set.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77526/1/2712_ftp.pd

    Influence of defects on the irreversible phase transition in the Fe-Pd doped with Co and Mn

    Get PDF
    The appearance of BCT martensite in Fe-Pd-based ferromagnetic shape memory alloys, which develops at lower temperatures than the thermoelastic martensitic transition, deteriorates the shape memory properties. In a previous work performed in Fe70Pd30, it was shown that a reduction in defects density reduces the non thermoelastic FCT-BCT transformation temperature. In the present work, the influence of quenched-in-defects upon the intensity and temperature of the thermoelastic martensitic (FCC-FCT) and the non thermoelastic (FCT-BCT) transitions in Fe-Pd doped with Co and Mn is studied. Differential scanning calorimetric and mechanical spectroscopy studies demonstrate that a reduction in the dislocation density the stability range of the FCC-FCT reversible transformation in Fe67Pd30Co3 and Fe66.8Pd30.7Mn2.5 ferromagnetic shape memory alloys.Fil: Bonifacich, Federico Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ingeniería Eléctrica. Laboratorio de Extensión e Investigación en Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lambri, Osvaldo Agustin F.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ingeniería Eléctrica. Laboratorio de Extensión e Investigación en Materiales; ArgentinaFil: Gargicevich, Damian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ingeniería Eléctrica. Laboratorio de Extensión e Investigación en Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zelada, Griselda Irene. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ingeniería Eléctrica. Laboratorio de Extensión e Investigación en Materiales; ArgentinaFil: Pérez Landazábal, J. I.. Universidad Publica de Navarra; EspañaFil: Recarte, V.. Universidad Publica de Navarra; EspañaFil: Sánchez Alarcos, V.. Universidad Publica de Navarra; Españ
    corecore