42 research outputs found

    Partial Purification and Characterization of Endoxylanase from a fungus, Leohumicola incrustata

    Get PDF
    Xylanases are glycoside hydrolases (GH) that degrade β-1,4-xylan, a linear polysaccharide found as hemicellulose in cell wall of plants. Endoxylanase (Endo-1,4-β-xylanase, EC 3.2.1.8) randomly catalyses xylan to produce varying short xylooligosaccharides (XOS). This study aimed to determine the characteristics of a partially purified endoxylanase from Leohumicola incrustata. Enzyme production was carried out using beechwood (BW) xylan, after which the cell-free crude filtrate was concentrated using the ammonium sulphate precipitation method. The hydrolysed products were analysed by thin-layer chromatography (TLC) and zymography. The result showed that the enzyme produced varying smaller-sized linear xylooligosaccharides with Rf values corresponding to those of xylobiose, xylotriose, xylotetraose, xylopentaose, xylohexaose and other higher oligomers. The endoxylanase had a molecular mass of 72 kDa. The enzyme is stable in the presence of K+, Na+, Ca2+, Fe2+, Mg2+, Zn2+, Co2+, pH of 5.0 and temperature of 37oC. However, the activity gradually decreased after 60 min at 50oC and retained over 69% activity after 120 min, while at 60 and 70oC, the enzyme activity sharply decreased (pre-incubation periods). Endoxylanase from L. incrustata is comparable to those of other microorganisms and should be considered an attractive candidate for future industrial applications

    Kalaharituber pfeilii and associated bacterial interactions

    Get PDF
    AbstractTruffles are generally known to form a mycorrhizal relationship with plants. Kalaharituber pfeilii (Hennings) Trappe & Kagan-Zur is a species of desert truffle that is found in the southern part of Africa. The life cycle of this truffle has not been fully investigated as there are many unconfirmed plant species that have been suggested as potential hosts. Many mycorrhizal associations often involve other role players such as associated bacteria that may influence the establishment of the mycorrhizal formation and function. As part of an effort to understand the life cycle of K. pfeilii, laboratory experiments were conducted to investigate the role of ascocarp associated bacteria. Bacterial isolates obtained from the truffle ascocarps were subjected to microbiological and biochemical tests to determine their potentials as mycorrhizal helper bacteria. Tests conducted included stimulation of mycelial growth in vitro, indole acetic acid (IAA) production and phosphate solubilising. A total of 17 bacterial strains belonging to the Proteobacteria, Firmicutes and Actinobacteria were isolated from the truffle ascocarps and identified with sequence homology and phylogenetic methods. Three of these isolates showed potential to be helper bacteria in at least one of the media tested through the stimulation of mycelial growth. Furthermore, four isolates produced IAA and one was able to solubilise CaHPO3 in vitro. One isolate, identified as a relative of Paenibacillus sp. stimulated mycelial growth on all the media tested. Other bacterial isolates that showed potential stimulation of mycelial growth were identified molecularly as a Bacillus sp. and two strains of Rhizobium sp. This study has contributed to the existing knowledge on the biotic interactions with K. pfeilii which may be useful in further symbiont and re-synthesis investigations

    Kalaharituber pfeilii and associated bacterial interactions

    Get PDF
    Truffles are generally known to form a mycorrhizal relationship with plants. Kalaharituber pfeilii (Hennings) Trappe and Kagan-Zur is a species of desert truffle that is found in the southern part of Africa. The life cycle of this truffle has not been fully investigated as there are many unconfirmed plant species that have been suggested as potential hosts. Many mycorrhizal associations often involve other role players such as associated bacteria that may influence the establishment of the mycorrhizal formation and function. As part of an effort to understand the life cycle of K. pfeilii, laboratory experiments were conducted to investigate the role of ascocarp associated bacteria. Bacterial isolates obtained from the truffle ascocarps were subjected to microbiological and biochemical tests to determine their potentials as mycorrhizal helper bacteria. Tests conducted included stimulation of mycelial growth in vitro, indole acetic acid (IAA) production and phosphate solubilising. A total of 17 bacterial strains belonging to the Proteobacteria, Firmicutes and Actinobacteria were isolated from the truffle ascocarps and identified with sequence homology and phylogenetic methods. Three of these isolates showed potential to be helper bacteria in at least one of the media tested through the stimulation of mycelial growth. Furthermore, four isolates produced IAA and one was able to solubilise CaHPO3 in vitro. One isolate, identified as a relative of Paenibacillus sp. stimulated mycelial growth on all the media tested. Other bacterial isolates that showed potential stimulation of mycelial growth were identified molecularly as a Bacillus sp. and two strains of Rhizobium sp. This study has contributed to the existing knowledge on the biotic interactions with K. pfeilii which may be useful in further symbiont and re-synthesis investigations

    Characterization of arbuscular mycorrhizal fungal species associating with Zea mays

    Get PDF
    Taxonomic identification of arbuscular mycorrhizal (AM) fungal spores extracted directly from the field is sometimes difficult because spores are often degraded or parasitized by other organisms. Single-spore inoculation of a suitable host plant allows for establishing monosporic cultures of AM fungi. This study aimed to propagate AM fungal spores isolated from maize soil using single spores for morphological characterization. First, trap cultures were established to trigger the sporulation of AM fungal species. Second, trap cultures were established with individual morphotypes by picking up only one spore under a dissecting microscope and transferring it to a small triangle of sterilized filter paper, which was then carefully inoculated below a root from germinated sorghum seeds in each pot and covered with a sterile substrate. All pots were placed in sunbags and maintained in a plant growth room for 120 days

    Tapping the role of microbial biosurfactants in pesticide remediation: an eco-friendly approach for environmental sustainability

    Get PDF
    Pesticides are used indiscriminately all over the world to protect crops from pests and pathogens. If they are used in excess, they contaminate the soil and water bodies and negatively affect human health and the environment. However, bioremediation is the most viable option to deal with these pollutants, but it has certain limitations. Therefore, harnessing the role of microbial biosurfactants in pesticide remediation is a promising approach. Biosurfactants are the amphiphilic compounds that can help to increase the bioavailability of pesticides, and speeds up the bioremediation process. Biosurfactants lower the surface area and interfacial tension of immiscible fluids and boost the solubility and sorption of hydrophobic pesticide contaminants. They have the property of biodegradability, low toxicity, high selectivity, and broad action spectrum under extreme pH, temperature, and salinity conditions, as well as a low critical micelle concentration (CMC). All these factors can augment the process of pesticide remediation. Application of metagenomic and in-silico tools would help by rapidly characterizing pesticide degrading microorganisms at a taxonomic and functional level. A comprehensive review of the literature shows that the role of biosurfactants in the biological remediation of pesticides has received limited attention. Therefore, this article is intended to provide a detailed overview of the role of various biosurfactants in improving pesticide remediation as well as different methods used for the detection of microbial biosurfactants. Additionally, this article covers the role of advanced metagenomics tools in characterizing the biosurfactant producing pesticide degrading microbes from different environments

    Mitigating Climate Change: The Influence of Arbuscular Mycorrhizal Fungi on Maize Production and Food Security

    Get PDF
    Anthropogenic activities have contributed to the increased atmospheric concentration of greenhouse gases, which are an important contributor to climate change. From 1940 to 2004, global emissions increased by 70%, and projections suggest a continual increase by 2050 due to agriculture, forestry, and other land uses. Arbuscular mycorrhizal (AM) fungi are ubiquitous in undisturbed soils and form a symbiotic relationship with various plants. The relationship that enhances nutrient uptake and plant growth, among other benefits, is well known. Several soil management practices employed in agriculture adversely affect the symbiosis. Zea mays (maize) provides 30% of total caloric intake to 4.5 billion people worldwide and is an important staple crop, vulnerable to climate change. Higher temperatures can result in increased water demand, while changes in precipitation can result in crop failure. AM fungi can be applied as inoculants to maize. Resulting in improved plant growth, yield, and nutrient uptake and providing superior food quality properties, such as increased antioxidants, vitamins, and minerals. AM fungi are considered a crucial biotechnological tool in crop production. This review illustrates their essential role in sustainable maize production and emphasizes the need to maintain AM fungal communities in the soil to mitigate the effects of climate change

    Variation in urease and β-glucosidase activities with soil depth and root density in a ‘Cripp's Pink’/M7 apple orchard under conventional and organic management.

    Get PDF
    The effects of conventional (CON; utilising synthetic fertiliser and herbicide) and organic (ORG; nutrients supplied in compost, weeds controlled with straw mulch) orchard floor management practices on depth-wise variation in urease and β-glucosidase activities in tree-row soils were compared in a Western Cape ‘Cripp's Pink’/M7 apple orchard. Urease and β-glucosidase activities were determined spectrophotometrically in soils from five depth intervals from the walls of trenches excavated across the tree rows after seven years of treatment application. Soil pH, organic carbon, nitrate (NO3 ) and ammonium (NH4 ) nitrogen were also determined, as was root density. Enzyme activities were higher in the ORG than the CON topsoils but did not differ significantly (p = 0.05) at depths >30 cm. The positive effects of the ORG treatments were attributed to the liming effect and carbon and nitrogen contributions of the compost. Urease and β-glucosidase activities correlated strongly. Activities of both enzymes correlated significantly and positively with carbon, NO3− and pH, with urease correlated more strongly than β-glucosidase. Only urease correlated with root density. Organic orchard floor management practices may be more effective than CON practices in promoting microbial enzyme activities in the 0–30 cm soil depth intervals of Western Cape apple orchard soils

    Pyrosequencing and phenotypic microarray to decipher bacterial community variation in Sorghum bicolor (L.) Moench rhizosphere

    Get PDF
    Different cultivation practices and climatic conditions play an important role in governing and modulating soil microbial communities as well as soil health. This study investigated, for the first time, keystone microbial taxa inhabiting the rhizosphere of sweet sorghum (Sorghum bicolor) under extensive cultivation practices at three different field sites of South Africa (North West-South (ASHSOIL1); Mpumalanga-West – (ASHSOIL2); and Free State-North West – (ASHSOIL3)). Soil analysis of these sites revealed differences in P, K, Mg, and pH. 16S rRNA amplicon sequencing data revealed that the rhizosphere bacterial microbiome differed significantly both in the structure and composition across the samples. The sequencing data revealed that at the phylum level, the dominant group was Cyanobacteria with a relative abundance of 63.3%, 71.8%, and 81.6% from ASHSOIL1, ASHSOIL2, and ASHSOIL3, respectively. Putative metabolic requirements analyzed by METAGENassist software revealed the ASHSOIL1 sample as the prominent ammonia degrader (21.1%), followed by ASHSOIL3 (17.3%) and ASHSOIL2 (11.1%). The majority of core-microbiome taxa were found to be from Cyanobacteria, Bacteroidetes, and Proteobacteria. Functionally, community-level physiological profiling (CLPP) analysis revealed that the metabolic activity of the bacterial community in ASHSOIL3 was the highest, followed by ASHSOIL1 and ASHSOIL2. This study showed that soil pH and nutrient availability and cultivation practices played significant roles in governing the bacterial community composition in the sorghum rhizosphere across the different sites

    Beauveria and Metarhizium against false codling moth (Lepidoptera: Tortricidae): a step towards selecting isolates for potential development of a mycoinsecticide

    Get PDF
    False codling moth, Thaumatotibia leucotreta Meyrick (1912) (Lepidoptera: Tortricidae), can cause both pre- and post-harvest damage to citrus fruit. Not only can this result in reduced crop yield, but more importantly because of the moth's endemism to sub-Saharan Africa, it is classified as a phytosanitary pest by many export markets. An entire consignment of citrus may be rejected in the presence of a single moth (Moore 2012). Since the bulk of citrus fruit production in South Africa is exported, the control of T. leucotreta is critical (Citrus Growers Association, South Africa 2012). Traditionally, control has been achieved through the use of chemical insecticides; however, residue restrictions, resistance development and concerns about environmental pollution have substantially reduced the dependence on chemical pesticides in citrus. Research on T. leucotreta control has therefore focused on the use of biological organisms (e.g. parasitoids and viruses), which are used as control agents within an integrated pest management (IPM) programme in citrus. These biological control agents, however, only targeted the aboveground life stages of the pest, not the soil-dwelling life stages (late fifth instars, prepupae, pupae), which is the subject of this contribution (Moore 2012)

    The potential use of treated brewery effluent as a water and nutrient source in irrigated crop production

    Get PDF
    Brewery effluent (BE) needs to be treated before it can be released into the environment, reused or used in down-stream activities. This study demonstrated that anaerobic digestion (AD) followed by treatment in an integrated tertiary effluent treatment system transformed BE into a suitable solution for crop irrigation. Brewery effluent can be used to improve crop yields: Cabbage (Brassica oleracea cv. Star 3301), grew significantly larger when irrigated with post-AD, post-primary-facultative-pond (PFP) effluent, compared with those irrigated with post-constructed-wetland (CW) effluent or tap water only
    corecore