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Chapter

Mitigating Climate Change: 
The Influence of Arbuscular 
Mycorrhizal Fungi on Maize 
Production and Food Security
Sílvia N.D. Maússe Sitoe and Joanna F. Dames

Abstract

Anthropogenic activities have contributed to the increased atmospheric con-
centration of greenhouse gases, which are an important contributor to climate 
change. From 1940 to 2004, global emissions increased by 70%, and projections 
suggest a continual increase by 2050 due to agriculture, forestry, and other land uses. 
Arbuscular mycorrhizal (AM) fungi are ubiquitous in undisturbed soils and form a 
symbiotic relationship with various plants. The relationship that enhances nutrient 
uptake and plant growth, among other benefits, is well known. Several soil manage-
ment practices employed in agriculture adversely affect the symbiosis. Zea mays 
(maize) provides 30% of total caloric intake to 4.5 billion people worldwide and is an 
important staple crop, vulnerable to climate change. Higher temperatures can result 
in increased water demand, while changes in precipitation can result in crop failure. 
AM fungi can be applied as inoculants to maize. Resulting in improved plant growth, 
yield, and nutrient uptake and providing superior food quality properties, such as 
increased antioxidants, vitamins, and minerals. AM fungi are considered a crucial 
biotechnological tool in crop production. This review illustrates their essential role in 
sustainable maize production and emphasizes the need to maintain AM fungal com-
munities in the soil to mitigate the effects of climate change.

Keywords: Zea may, symbiotic benefits, drought and salinity, soil management, 
sustainable agriculture

1. Introduction

Crop production is the primary source of staple foods and is particularly sensitive to 
climate change. Activities such as synthetic fertilizer use, livestock rearing, change 
in land-use patterns, deforestation, waste disposal, burning of fossil fuels, industrial 
manufacturing and transportation have contributed to the increased atmospheric 
concentration of greenhouse gases, contributing to climate change [1]. Of the global 
anthropogenic greenhouse gas emissions, approximately 13% are attributed to 
agricultural practices [2]. Predictions indicate that by 2030 these emissions will rise 
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almost 40%, primarily due to increasing demand from a growing population and 
changing consumption patterns for food, including increasing demand for ruminant 
meats [3].

Between 1940 (pre-industrial) and 2004, global greenhouse emissions (GHG) 
increased by 70% [2]. Average temperatures have increased by 1.5–2°C. Urgent 
climate change mitigation is required to halt further increases. The effect on agricul-
ture is severe, with adverse growing conditions such as drought and extreme weather 
events already evident [4]. Agriculture can reduce these negative effects, increasing 
carbon storage by improving cropping and land management practices [5].

Mitigation technologies may not be cheap and easy, but the cost and benefits 
will be less than the losses caused by climate change [6, 7]. The expected impacts of 
climate change will be most adverse in low- and middle-income countries, where mil-
lions of people depend on agriculture and are vulnerable to food insecurity [8, 9]. The 
impact on global food security will relate to food supply and food quality, food access 
and utilization, and the stability of food security resulting in reduced per capita 
calorie availability, childhood malnutrition, and child deaths [10]. Climate change 
may affect the nutritional properties of some crops. The concentrations of minerals in 
some crops (e.g., wheat, rice, and soybeans) were up to 8% lower under conditions of 
elevated carbon dioxide (CO2) levels [11]. Studies on yields (primarily wheat, maize, 
rice and soybeans) under different climate change conditions indicate that climate 
change may significantly reduce these in the long run [12].

Maize (Zea mays L.) is known globally as the queen of cereals because it can be 
grown throughout the year, is photo-thermo insensitive and has the highest genetic 
yield potential among cereal crops. Maize provides 30% of total caloric intake to 4.5 
billion people worldwide [13]. The grain contains about 72% starch, 10% protein, 
4.8% oil, 5.8% fiber, 3.0% sugar, and 1.7% ash [14]. The major maize-producing 
countries are the USA, China, Brazil, Argentina, Ukraine, Indonesia, India and 
Mexico [15]. Globally, maize is grown mainly for livestock feed, food, and industrial 
materials [16]. Regarded by most people as a breakfast cereal, maize is also a source of 
fuel (ethanol) and starch in processed form. Enzymatically maize starch is converted 
into products such as sorbitol, dextrin, sorbic and lactic acid and appears in house-
hold items such as beer, ice cream, syrup, shoe polish, glue, fireworks, ink, batteries, 
mustard, cosmetics, aspirin, and paint [17]. In South Africa, maize is the most impor-
tant grain crop for feed and is a staple of most of the population [17]. Of the total 
maize produced in South Africa, approximately 60% is white (for human consump-
tion), and 40% is yellow (mainly for animal feed) [18]. Adverse effects of climate 
change on agricultural production will be most severe in the global south, particularly 
South Asia and Sub-Saharan Africa, many regions of which remain underdeveloped 
[19]. Finding ways to improve the productivity of agriculture, particularly of staple 
crops such as maize, is one means of meeting these future challenges.

2. Improving nutrient uptake

Management technologies, crop species, and soil type play a significant role in soil 
microbial diversity [20]. Arbuscular mycorrhizal (AM) fungal diversity positively 
contributes to nutrient and water use efficiency [20]. The frequent use of soil amend-
ments such as fertilizers, organic residues, and pH adjustments to improve crop yields 
can change the soil properties, which leads to variations in plant and fungal responses 
that can modify the outcome of the symbiosis [21].
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In many soils worldwide, low phosphorus (P) availability can limit plant growth [22]. 
Availability and acquisition of P in terms of plant root architecture and mycorrhizal 
association is controlled by rhizospheric chemical and biological processes which 
compensate for this limitation [23]. Maize has a high requirement for nitrogen (N) 
and P nutrients, and these are applied in large quantities to realize high yields [24]. 
Not all applied fertilizer is absorbed. For example, maize absorbs only 55–60% N 
[25], around 20% P [26], 50–70% potassium (K) [27] and 33% sulfur (S) [28]. One 
strategy to reduce fertilizer usage, especially P, is to use AM fungi to improve maize 
nutritional status and growth [29].

AM colonized plants absorb more P (nearly 80% of the plant P uptake) at lower 
concentrations in the soil solution than non-mycorrhizal plants [30–32]. The AM 
fungi forms an extraradical mycelium (ERM) network that effectively exploits the 
soil environment in the search of nutrients [33, 34], providing access to more soluble 
forms of phosphate [35, 36], and promotes plant N uptake [37]. Acquisition of other 
soil nutrients such as copper (Cu), iron (Fe), K, zinc (Zn), calcium (Ca) and S, 
especially when plants are grown in nutrient deficient soils are also improved by the 
symbiosis [38–41].

Different AM fungal species exhibit different levels of effectiveness. A study by 
Bi et al. [42] on maize’s growth and nutrient uptake showed that the effect of two 
AM fungi, Funneliformis mosseae and F. versiforme, increased plant growth when 
compared with non-inoculated controls. F. mosseae being the most effective. In a field 
experiment, commercial AM fungal inoculants applied to maize improved plant 
growth, yield, and P uptake under both un-fertilized and P-fertilized treatments 
[43]. Inoculation of maize with Glomus caledonium increased soil organic C content 
in maize straw-amended soils, likely due to enhanced rhizosphere acidification and 
increased nutrient (notably P) uptake in the seedling period.

Intercropping can also improve plant nutrient uptake [44] because intercrop-
ping systems can better use one or more agricultural resources both in time and 
in space [45]. He et al. [46] reported N transfer from N2 fixing legumes to maize 
and other crop species. Marzban et al. [47] demonstrated that intercropping 
maize and green bean could increase root growth of maize (about 7.2% more than 
in monocropping). Biological nitrogen fixation is heavily dependent on P, which 
provides energy for converting atmospheric N to useable N compounds. Arbuscular 
mycorrhizal fungi form a tripartite association with N-fixing rhizobia and legumes 
assisting in acquiring P [48].

Plant nutrient uptake involves two pathways, the direct pathway (DP) involves 
uptake of nutrients from the rhizosphere by the root epidermis and root hairs [49]. 
The mycorrhizal pathway (MP) develops behind the root hair zone and involves 
uptake of nutrients by the ERM, rapid translocation over many centimeters, deliv-
ery to the symbiotic interfaces, and transfer to the plants [34]. The two pathways 
are potentially independent and involve different cell types and different nutrient 
transporters, providing capacity for independent and coordinated regulation and 
nutrient access from different regions and volumes of soil [39, 41]. The conserved 
P-sensing pathway regulates the direct and indirect P acquisition pathways, cen-
tered on phosphate starvation response (PHR) transcription factors [50]. PHR 
transcription factor was characterized in many plant species [51, 52]. Xu et al. [53] 
identified 18 ZmPHR genes involved in relocating inorganic P across different 
maize plant tissues.

The mycorrhizal pathway involves the uptake of orthophosphate (Pi) by AM 
fungal high-affinity Pi transporters in the ERM, followed by translocation of P 
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along the hyphae to intracellular structures in the root cortex and then transfers P 
to the root [34, 54–56]. Polyphosphate (polyP: linear chains of Pi residues linked by 
phosphoanhydride bonds) accumulate in the hyphae, where it buffers cytoplasmic 
Pi concentration, providing temporary P storage, and translocate P along hyphae 
[50, 57] resulting in rapid, long distance P translocation from sites of uptake in the 
ERM to sites of transfer to the plant [58]. Pi and polyP are known to carry negative 
charge, which cations must balance. In soil-grown plants, K+ and Mg2+ may play 
this role [59, 60]. H+-ATPases, which energize perifungal membranes surrounding 
arbuscules, are involved in all Pi-uptake steps [61–63].

The advantage of the AM symbiosis for plants in acquiring P is that AM fungi 
provide a very effective pathway, the AM pathway, for scavenging P from large 
volumes of soil and rapidly delivering to cortical cells within the root bypassing direct 
uptake [34]. Research by Smith and colleagues [34, 64] revealed that the AM pathway 
plays a significant role in P uptake, regardless of how an AM plant benefits in terms of 
increased growth or P uptake.

In addition, AM fungi can deliver substantial amounts of N to the host plant [65]. 
Researchers have different opinions on the mechanisms of N transfer to the host 
plant. Smith et al. [66] suggested that N might be transferred from the fungus to the 
host in the form of amino acids (AA) or amides. While Kaldorf et al. [67] suggested 
transfer in the form of NO3

−, Bago et al. [68] postulated that N is transferred to the 
host as NH4

+. The allocation of C to the AM fungi has been reported to depend on the 
N status of the mycorrhizal root, which indicates that the stoichiometry of C and N 
regulates the nutrient exchange between the fungus and the host plant [69]. The ERM 
absorbs various forms of N with 21% of total N taken up by the fungal ERM trans-
ferred to roots in root organ culture [70]. Additionally it was demonstrated that 74% 
of the total N in the leaves of maize was derived from the slow-release urea added to 
the hyphal compartment [71].

Studies showed that the AM fungus Glomus hoi enhanced degradation of organic 
residues and N uptake by the host plant [72, 73]. Jin et al. [74] demonstrated that urea 
or NH4

+ were absorbed more rapidly than NO3
−, amino acids (AA), and proteins when 

supplied as N sources for AM fungal uptake. Assimilation of NH4
+ is the principal 

means of N absorption in AM fungal systems mediated by a specific carrier [75]. 
GintAMT1, which encodes the high-affinity NH4

+ transporter in the AM fungus 
Rhizophagus intraradices [76] is one such carrier. The uptake of NO3

− is linked to an H+ 
symporter that alkalinizes the external mycelium. It has been shown that mycorrhizal 
roots growing in a NO3

− amended soil induced an initial (30 d) alkalinization of the 
mycorrhizosphere, which was followed (at 60 d) by strong acidification. This acidifi-
cation of the mycorrhizosphere would be the consequence of the unmasking of other 
cation/anion balances involved in different nutrient uptake processes once the nitrate 
is depleted [77, 78].

3. Carbon sequestration

The AM symbiosis represents a significant link between atmospheric and 
soil-contained carbon (C). Soil is one of the planet’s largest C sinks. It stores at least 
twice as much C as currently occurs in the world’s vegetation plus atmosphere. The 
estimated total soil organic carbon (SOC) to 2-meter depth is 2400 Pg, which is three 
times the amount of CO2 currently in the atmosphere (~830 Pg C) and 240 times 
current annual fossil fuel emissions (~10 Pg) [79]. Carbon storage depends on the 
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balance between carbon sequestration by plant photosynthesis and carbon release to 
the atmosphere through soil respiration [79, 80]. Atmospheric CO2 concentrations 
will reach 550 ppm by 2100, accompanied by an increase in global average annual 
temperature of 4.4 ± 0.5°C for 2070–2099 [81]. One of the consequences of this 
increase may be increased carbon availability to fungi to develop the mycorrhizal 
mycelium [82]. AM fungi receive increased levels of photosynthates under elevated 
CO2 before other soil microbes [83, 84], increasing AM fungal colonization [85, 86]. 
Treseder and Allen [87] reported that mycorrhizal dependent plants allocate 5–20% 
of the net photosynthate to maintain symbiosis [88] increasing the sink effect and 
movement of photo-assimilates from aerial parts to the roots [89]. CO2 enhancement 
of AM fungi might alter terrestrial ecosystem C dynamics by stimulating the decom-
position of soil organic C in AM fungal active zones [90]. Globally forest soils release 
approximately 24Pg carbon per year into the atmosphere via CO2 efflux and generate 
CO2 from a wide variety of belowground organisms, with AM fungi as the dominant 
carbon source [91]. Elevated CO2 increases allocation to AM hyphae in the soil outside 
plant roots [86, 92] due to carbon sequestration [93]. Research conducted in a German 
grassland community reported that AM fungi stimulated soil respiration of pasture 
soil, leading to elevated CO2 levels and temperature, with most carbon sequestered in 
belowground parts [94, 95].

High-temperature stress negatively affects plant morphological, physiological, and 
biochemical growth, leading to reduced plant productivity [96, 97]. Hatfield et al. 
[98] showed that temperatures above 35°C affected maize vegetative and reproductive 
growth, from germination to grain filling. Temperature also regulates mycorrhizal 
fungal growth and metabolic activity [99], with colonization peaking during the 
growing season when temperatures are warm [100]. Changes in atmospheric CO2 
concentration and temperature and resulting changes in soil physicochemical prop-
erties and microbial activity [101] can influence mycorrhizal symbiosis on various 
scales [102].

Crop growth and development are critical factors in determining the impact of a 
changing environment. Increasing temperatures affect all major grain crops [103]. 
Maize is one of the most important crops grown in tropical countries and tolerates 
temperatures up to 32–33°C. Beyond this range, crop growth and yield starts to 
decline [103]. Photosynthesis is one of the most heat-sensitive processes in plants 
and is essential to maintaining the mycorrhizal symbiosis [104, 105]. The AM fungal 
network provides the host plant with nutrients and water from the soils and enhances 
the plant’s tolerance to various abiotic stresses [106] and can thus alleviate additional 
stress placed on crop plants due to climate change.

4. Tolerance to drought, temperature and salinity

Environmental factors are stressors that impact plant growth [107]. Drought 
is a significant challenge [108] resulting from low precipitation and a high rate of 
evapotranspiration causing reduction in plant cell division and proliferation of roots, 
closure of stomatal pores, changes in plant and water uptake efficiency, and high 
production of abscisic acid, which further decreases evapotranspiration by control-
ling stomatal pores [109]. Plants have developed various mechanisms to retain water 
under these conditions.

The ability of AM fungi to exploit soil resources assists the host plants’ ability to 
grow under drought stress [110]. The AM fungal hyphae can absorb water by entering 
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soil pores that are too small for root hairs to access [111, 112]. AM fungal mycelia can 
also improve soil moisture retention by enhancing soil aggregation [113]. Glomalin 
is a hydrophobic protein [113] present in AM fungal hyphal walls [114], which forms 
an insoluble glue with a strong cementing capacity that stabilizes soil aggregates 
[92, 115–119]. Glomalin is quantified by measuring several glomalin related soil-pro-
tein (GRSP) pools [92]. The glomalin compound contains 30–40% C, which protects 
the soil from drying out [120], 0.9–7.3% of N, 0.03–0.1% of P and metal ions [121]. 
Hyphae and glomalin contributed up to 15% of soil organic C in a grassland [122]. 
As a result, a considerable amount of C allocated to AM fungi is used in glomalin 
production, governed by plant productivity [122]. The regulation of plant nutrient 
uptake, stomatal conductance, leaf water potential, photosynthesis, and transpiration 
[123, 124] help plants to produce significantly higher yields under stressful condi-
tions. The AM fungi modify the root hairs allowing plants to overcome drought [123]. 
They assist in maintaining high relative water content of the leaf, improving water use 
efficiency [125], increasing leaf area, delaying senescence [126] and maintaining ion 
balance [127]. Li et al. [128] observed that in the arbuscule-enriched cortical cells and 
ERM of maize roots, the expression of two functional aquaporin AM fungal genes i.e., 
GintAQPF1 and GintAQPF2, were enhanced under drought stress. Maize is sensitive 
to drought and heat stress, particularly at the reproductive stages of development 
reducing grain yield [129]. Some AM fungal species, such as Funneliformis mosseae, 
minimize the adverse effects of drought by the accumulation of AA, increase in tre-
halose content and higher trehalase activity [130]; Rhizophagus intraradices increased 
plant dry weight, uptake of P, N, K, and Mg in shoot, and water use efficiency [131].

In many parts of the world, maize production occurs in semi-arid environments 
where high temperatures and water scarcity [132, 133] are common challenges. 
In China 60% of crops in maize growing regions are often subjected to spells 
of heat and drought, resulting in 30% yield losses per year [133]. These climate 
change-induced stresses will significantly threaten maize yields and decrease 
world maize production by 15–20% annually [133, 134]. AM fungi play an essen-
tial role in improving drought tolerance. They mediate the increase in nutritional 
status by increasing the developing root surface area, enhancing the uptake of P 
[131, 135, 136], increasing resistance to withering [137], increasing proline accu-
mulation levels in roots [138, 139] and by increasing photosynthetic activity as 
detected by the increase in chlorophyll [140, 141]. Temperature is another important 
environmental factor that determines the growth and productivity of crops [142]. 
Temperature stress (low and high temperature) can occur during the growing season 
[97, 143] resulting in the disruption of physiological and biochemical processes and 
functions. This results in injuries such as damage of cell membrane structure and 
lipid composition, cellular leakage of electrolytes and amino acids, peroxidation of 
membrane lipids, a diversion of electron flow to alternate pathways, denaturation 
and aggregation of proteins, redistribution of intracellular calcium ions, inactivation 
of enzymes in chloroplast and mitochondria, and production of toxic compounds 
and reactive oxygen species (ROS) [97, 136, 144, 145]. AM symbiosis can alter plant 
physiology to deal with these stress conditions [146].

Zhu et al. [136] reported that Claroideoglomus etunicatum could be used to reduce 
high temperature effects on maize by reducing membrane lipid peroxidation, mem-
brane permeability and increasing accumulation of osmotic adjustment compounds 
and antioxidant activity. At 35°C and 40°C, positive net photosynthesis rate, transpi-
ration rate, stomatal conductance, chlorophyll and carotenoid contents, relative water 
content and negative intercellular CO2 concentrations were recorded [136, 142].
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Soil, water and the environment can influence crop salt tolerance [89]. Among 
abiotic stresses, soil salinization is probably one of the most important in the world 
[147]. Globally, arid and semi-arid soils are significant factors limiting agricultural 
productivity due to the high soil salinity [148]. More than 800 million hectares of 
land worldwide is affected by either salinity (397 million hectares) or sodicity (434 
million hectares) [149]. The accumulation of soluble salts in the rhizosphere can 
reduce water potential and, consequently, water availability to plants. Under such 
circumstances, the uptake of these salts can affect the physiological processes of 
plants growing in these environments [150, 151] and poses the biggest challenge to 
food security [152]. Rhizophagus intraradices and Funneliformis geosporum increased 
leaf length, plant height, leaf number, chlorophyll a content, photosynthetic rate, 
stomatal conductance, and transpiration rate in maize [106]. Farooq et al. [153] found 
that AM fungal colonization and symbiosis improved salt resistance in maize due to 
better nutrient availability, increased potassium/sodium ratios in plant tissues, and 
better osmotic adjustment.

Increased temperatures and resultant drought and salinity are not the only legacies 
of climate change. Anthropogenic activities, which include industrial activities (min-
ing, metal processing, fossil fuel combustion) and agricultural practices (application 
of fertilizers, fungicides, and sewage sludge disposal), have been described as the 
primary contaminants of the environment with heavy metals and are not included in 
this review [154, 155], however these and other growth benefits to maize are illus-
trated in Figure 1.

5. Soil management for enhanced maize production

Severely disturbed land is a global concern because changes in land use are one 
of the biggest threats to biodiversity and ecosystem services worldwide. This is 
exacerbated by increased demand for agricultural production. Studies conducted 
have shown that disturbance not only reduces AM fungal abundance, diversity and 
infectivity but can also result in drastic shifts in the AM fungal community [156]. 
AM fungal hyphae and root litter are the most abundant carbon source in the soil 
[157], providing energy for other soil microbes to flourish [92]. They may increase 
the diversity and abundance of microorganisms beneficial to plant growth and 
health [157]. Hyphae are highly susceptible to disturbance and disturbance results in 
reduced infective potential of AM fungi [157]. As the scale of degradation increases, 
the abundance and diversity of AM fungi reduces [158].

Tillage management plays a central role in ecological and biological stabil-
ity, which is closely related to soil quality, by influencing the activities of soil 
microbial communities [159–161]. Soil disturbance, caused by tillage or plowing, 
decrease AM fungal colonization, disrupt AM hyphal networks [162–166], reduc-
ing spore numbers [167, 168], AM fungal species richness [156, 169] and glomalin 
 production [170].

Conventional or conservation tillage are soil management methods employed 
[171]. Conservation tillage results in less disturbance when compared with con-
ventional tillage and tends to benefit the soil by conserving aggregate stability and 
organic matter content [172]. Other reported benefits include higher microbial 
biomass in conservation tillage due to less disruption and preservation of the hyphal 
network, contributing to aggregate stability [173, 174]. Reduced tillage increased the 
abundance of AM fungal and saprotrophic fungal lipids in shallow soil layers [175].
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Soil disturbance reduced P uptake from the soil by maize plants, while the uptake 
of P by canola was not affected [176]. Canola, a non-mycorrhizal host plant, supports 
the hypothesis that soil disturbance reduces the effectiveness of the mycorrhizal 
association. McGonigle et al. [177] found that tillage reduced colonization of maize, 
and the P and Zn contents of maize shoots. The alteration of AM fungal communities 
by tillage has been reported under field conditions [178]. They demonstrated that 
colonization by AM fungi from the genus Scutellospora was depressed by intensive 
tillage, while members of the genus Glomus were not affected. Fairchild and Miller 
[179] demonstrated improved AM colonization of maize growing in the undisturbed 
soil compared to the disturbed soil when amended with P.

Globally, the prevalence of low fertility soils requires amendment with large 
amounts of inorganic fertilizers and application of pesticides to achieve maximum 
plant growth and crop yield [180, 181]. The excessive and inappropriate application 
of chemical fertilizers can cause a series of environmental problems and soil degrada-
tion. Balzergue et al. [182] found that the high P concentrations in plants induced 
by high P fertilization inhibited mycorrhizal symbiosis. Symbiosis modulating 

Figure 1. 
Schematic representation of the effect of AM fungi on maize crop: (a) extensive roots on plant colonized by AM 
fungi, (b) reduced roots on plant with no colonization. (17/02/2021 - Biorender.com).
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compounds in root exudates such as strigolactone are also reduced under high P con-
ditions [183]. Under these conditions plants are less reliant on mycorrhizal mediated P 
uptake and reduce carbohydrate sharing [184–186], this results in a decreased supply 
of soluble carbohydrate in roots reducing appressorial formation and new coloniza-
tion [183, 184]. These phenomenal impact AM colonization, arbuscule formation 
and active P transfer to plants [187]. Some AM fungi can be relatively susceptible 
to fungicides, particularly when applied to the seed or the soil [188] while other 
fungicides can also stimulate mycorrhizal growth [189]. Fungicides such as flutolanil, 
azoxystrobin, fenpropimorph and fenhexamid can inhibit spore germination of 
Rhizophargus irregularis [190, 191]. The insecticide, oxamyl reduced root colonization 
by a commercial Funneliformis mosseae inoculum [192], and azadirachtin inhibiting 
Claroideoglomus etunicatum in the field causing a significant shift in the AM fungal 
community [193].

The response of AM fungi to agrochemicals is both substance- and dose-depen-
dent. A field experiment showed that most AM fungi belonging to the Glomus group 
were sensitive to high levels of herbicide nicosulfuron which accumulated in soil due 
to repeated applications in later culture cycles [194]. Atrazine has been used as an agri-
cultural herbicide worldwide, mostly on maize, sorghum, and sugarcane. Studies on 
maize showed a significant reduction in AM fungal spores [181] and AM colonization 
[195]. Makarian et al. [196] found a significant effect of the herbicide (metribuzin) on 
maize dry weight where an increase in herbicide concentration resulted in a decrease 
in the maize dry weight. Low herbicide concentrations resulted in increased shoot 
height of AM plants than when applied at high concentrations suggesting that mycor-
rhizal fungi can alleviate crop stress under lower doses of the herbicide [196].

The extensive use of agrochemicals reduces ecosystem functioning, contributing 
to soil and water degradation [197]. It also exerts deleterious effects on human health, 
mainly through the exposure of workers [198–200] and the intake of contaminated 
food crops [201]. Therefore, increasingly, the enhancement of more biologically based 
cultivation for safer and healthier food is a rising need, along with finding alterna-
tives to replace agrochemicals in plant production [202–204]. The use of biofertil-
izers appears to be a natural option, particularly in low agrochemical input systems, 
because of their capacity to maintain long term soil fertility and sustainability by 
improving the uptake efficiency and availability of nutrients to plants [205]. Plants 
inoculated with AM fungi not only have improved growth but also have superior food 
quality properties, such as increased antioxidants, vitamins, and minerals [206]. AM 
fungal benefits related to maize are summarized in Table 1.

Monoculture is the cultivation of a single crop over a large area over consecutive 
years [241] and was adopted as a means to increase production [242]. Cultivated crops 
usually have identical genetic similarities, uniform growth patterns, and resistance 
to certain common diseases in monoculture. This system includes crop varieties 
uniquely suited to the specific conditions of a particular location [243]. This approach 
is criticized for its environmental impacts and is known as one of the major causes of 
soil degradation due to nonrotational cropping [244].

Hijri et al. [243] found that in continuous maize monoculture diversity of AM 
fungi decreased but found high diversity in long term field experiments where 
low-input agriculture involving crop rotation provided better conditions for their 
preservation. Sangabriel-conde et al. [245] investigated the AM fungal symbioses in 
native maize landraces at different levels of phosphorus fertilization. They showed a 
high diversity of AM fungi, most of which colonized several maize varieties, was best 
achieved at a moderate P level.
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One of the most important soil properties is its structure [246]. Soil structure 
results from the iterations of the soil’s chemical, physical and biological factors 
[247, 248]. Soil management practices, especially tillage systems, affect almost all soil 
properties, including AM fungi activity, diversity, and glomalin production [248].

Arbuscular mycorrhizal fungi have essential functions in the construction of the 
soil structure by acting on the formation and stabilization of the aggregates  
[247, 249–251]. The effect of AM fungi on soil aggregation is a result of ERM 
growth into the soil matrix creating the skeletal structure that physically entangles 
soil particles which along with roots enable microaggregates to form in the soil. 
Microaggregates form larger aggregated [251] via the production of a soil glycopro-
tein, glomalin [247, 252–254].

AM fungi account for 5–50% of the biomass of soil microbes [255]. Approximately 
10–100 m mycorrhizal mycelium per cm root has been estimated [164], the biomass 
of the ERM may amount to 54–900 kg/ha [256]. Rilling et al. [120] estimated that 
pools of organic carbon such as glomalin produced by AM fungi might even exceed 
soil microbial biomass by a factor of 10–20. Glomalin is present in the soil in large 
amounts. The concentration of glomalin in soil depends on the vegetation cover and 
the manner of soil management [257] and ranges from 1.6 to 2.3 mg/g soil [258]. 
Some examples of glomalin concentration in diverse ecosystems include; Agricultural 
land 0.3–0.7 mg/g [114, 259]; Boreal forest 1.1 mg/g [260]; Desert 0.003–0.13 mg/g 
[170, 261]; Temperate forest 0.60–5.8 mg/g [170, 262, 263]; Temperate grassland 
0.23–2.5 mg/g [263–265]; Tropical rainforest 2.6–13.5 mg/g [170, 266] and Antarctic 
region 0.007–0.15 mg/g [267]. For example, in the top 10 cm of a tropical rain forest 
in Costa Rica up to 12.5 mg of glomalin cm−3was reported [266] and up to 60 mg of 
glomalin cm−3 in a chrono sequence of Hawaiian soils [120]. Glomalin has a longer 
residence time in soil than hyphae, allowing for a long persistent contribution to soil 
aggregate stabilization. For hyphae, the residence time varies from days to months 

Parameter (p/f)* Benefits Reference

Nutrient uptake (p) Increased - N; P; K; Ca; Mg; Na [37, 186, 207–223]

Nutrient uptake (f) Increased - P; K; Ca; Mg; Fe [221, 224–226]

Vegetative growth (p) Increased - shoot and root biomass; root 
length; plant, leaf and tassel length; stem girth

[186, 203, 205, 206–209, 211, 
213, 214, 216, 219, 221–229]

Vegetative growth (f) Increased - shoot and root biomass; root 
length; plant height; leaf mass and area

[217, 221, 224, 226, 230–234]

Yield (p) Increased - cob and grain yield; number of 
grains per cob

[215, 221, 235–237]

Yield (f) Increased - cob and grain yield; number of 
grains per cob; silage yield

[226, 231, 233, 234, 238]

Salinity tolerance (p) Increased - shoot and root biomass; K+; Na+; 
root volume and diameter; Reduced Cl and Na 
in shoots;

[208, 211, 239]

Salinity tolerance (f) Increased – soil macroaggregates; soil bacterial 
diversity; nutrient uptake; photosynthesis and 
chlorophyll; K+; Na+

[217, 240]

*p/f indicates whether the experiment was conducted under pot (p) trial or field (f) trial conditions.

Table 1. 
Compendium of studies showing effect of arbuscular mycorrhizal (AM) fungi on maize.
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[86, 266], while for glomalin, it varies from 6 to 42 years [120]. The effects of AM 
fungi on soil aggregation are probably more easily detected in nutrient-poor soils with 
neutral or alkaline soil pH [268]. The management of mycorrhizal fungi and diversity 
in the soil can be considered a biological approach to improving soil structure [269, 
270]. Improved soil structure results in improved water infiltration and can mitigate 
raindrop impact through higher soil stability, increasing resistance to slaking and 
reduced particles detachment [271]. Significant decreases in AM fungi hyphae and 
GRSP concentrations have been correlated to losses of C and N protected in macroag-
gregates as a result of reduced aggregate stabilization [272].

Maize is an obligatory mycorrhizal species (Table 1) readily colonized by many 
non-host-specific AM fungi [273]. Agricultural techniques employing direct 
sowing and reduced tillage interfere as little as possible with the soil structure and 
do not cause tearing of the trunks of mycorrhizal fungi [273, 274] resulting in an 
increase and activity of soil microorganisms and enzymes, especially in the top 
20 cm layer. Roldán et al. [275] examined the effect of different management prac-
tices on the soil profile distribution of organic matter and physical and microbio-
logical soil quality indicators in a maize field under subtropical conditions. They 
concluded that the tillage system significantly affected aggregate stability and 
glomalin. The increases in glomalin suggested that the proliferation of AM fungi 
could have mediated the improvement in soil aggregate stability under no-tillage. 
Investigating the influence of tillage and no-tillage on the mycorrhizal status of 
a field cultivated with maize or bean [276] revealed that GRSP was greater under 
no-tillage Maize plants (with a root mass of 450 g m−3) had a more marked effect 
on improving soil aggregate stability than bean plants (with a smaller root mass of 
42 g m−3).

6. Conclusions and recommendations

Adoption of good agriculture management practices can increase productivity, 
reduce erosion, increase soil fertility, and increase the soil’s water-holding capacity. For 
farmers, it is often easier to use the agricultural systems that they are familiar with and 
that are supported by existing research and existing industries rather than search for 
the necessary solutions. Some of these systems do not consider the differences of the 
agroecological zones, cultures and resource limitations which tend to fail in most of 
the areas where they are applied. Improved soil fertility is critical. Therefore, strategies 
must include biologically based systems to rebuild soil fertility. Populations and space 
pressures are forcing farmers to use land more intensely. Reducing land degradation 
and replenishing soil fertility requires an integrated sustainable approach that pro-
motes agricultural management practices that enhance AM fungal diversity. AM fungi 
are a key ecosystem partner that relates to sustainable management in their activity 
contributing to many ecosystem functions, including soil aggregation, reduced nutri-
ent losses, and improved plant nutrient acquisition, which may reduce the amounts of 
fertilizer required to achieve elevated yields. Because mycorrhizal networks can create 
indefinitely large numbers of fungal linkages connecting many plants in a community, 
AM fungal formation could be a critical element in the plant succession of ecosystems 
and reducing greenhouse gases. The distribution pattern of AM fungi and glomalin are 
helpful components in monitoring desertification and soil degradation [277].

Mitigating of climate change cannot ignore the role of AM fungi and their sym-
biotic interaction with important crops such as maize. Adoption of soil management 
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approaches that sustain AM fungal populations whether indigenous or introduced are 
therefore essential.
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