9 research outputs found

    Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    Get PDF
    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional content and health benefits of lettuce through marker-assisted breeding

    Improving the nutritional quality and shelf life of baby leaf lettuce (Lactuca sativa)

    No full text
    There is a pressing need to progress the focus in crop breeding to consider post-harvest quality, if the concept of sustainable intensification is to materialise. Lettuce (Lactuca sativa L.) is widely consumed worldwide; however it has a relatively low nutrient density and a short shelf life, which result in considerable amounts of food and resource waste. Improvements to the nutritional quality of lettuce could substantially boost phytonutrient intake, contributing to health by reducing the incidence of chronic diseases. Improving shelf life could not only reduce the wastage of food, but also finite resources such as land, energy and water used in crop production. Chapters 2 and 4 are dedicated to determining the genetic basis of lettuce nutritional quality and shelf life, respectively, using a quantitative trait loci (QTL) mapping approach. QTL for nutrition and shelf life-related traits were identified and for the first time, candidate genes underlying these post-harvest traits have been described for lettuce, using the recently published genome. In Chapter 3, attempts to introgress QTL for nutritional quality into an elite cultivar by marker-assisted breeding led to the development of a novel green leaf variety, demonstrating ~50% higher antioxidant content in comparison to a standard green cultivar. Chapter 4 describes efforts to refine candidate gene lists for shelf life utilising a candidate gene association mapping approach, performed using a panel of baby leaf lettuce cultivars, detecting significant marker-trait associations in this different genetic background. Finally, in Chapter 5, the revolutionary CRISPR/Cas genome editing technology was employed, to knockout promising candidate genes for shelf life in an attempt to functionally validate candidate genes. This research fundamentally enhances our knowledge of the genetic basis of important quantitative traits for a food crop of global significance

    Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa)

    No full text
    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional content and health benefits of lettuce through marker-assisted breeding

    Surface Topography, Microbial Adhesion, and Immune Responses in Silicone Mammary Implant-Associated Capsular Fibrosis

    No full text
    Breast cancer is the most common cancer in women globally, often necessitating mastectomy and subsequent breast reconstruction. Silicone mammary implants (SMIs) play a pivotal role in breast reconstruction, yet their interaction with the host immune system and microbiome remains poorly understood. This study investigates the impact of SMI surface topography on host antimicrobial responses, wound proteome dynamics, and microbial colonization. Biological samples were collected from ten human patients undergoing breast reconstruction with SMIs. Mass spectrometry profiles were analyzed for acute and chronic wound proteomes, revealing a nuanced interplay between topography and antimicrobial response proteins. 16S rRNA sequencing assessed microbiome dynamics, unveiling topography-specific variations in microbial composition. Surface topography alterations influenced wound proteome composition. Microbiome analysis revealed heightened diversity around rougher SMIs, emphasizing topography-dependent microbial invasion. In vitro experiments confirmed staphylococcal adhesion, growth, and biofilm formation on SMI surfaces, with increased texture correlating positively with bacterial colonization. This comprehensive investigation highlights the intricate interplay between SMI topography, wound proteome dynamics, and microbial transmission. The findings contribute to understanding host–microbe interactions on SMI surfaces, essential for optimizing clinical applications and minimizing complications in breast reconstruction
    corecore