6 research outputs found

    White matter microstructural development in the course of ADHD

    No full text

    Dorsal-to-ventral imbalance in the superior longitudinal fasciculus mediates methylphenidate’s effect on beta oscillations in ADHD

    No full text
    While pharmacological treatment with methylphenidate (MPH) is a first line intervention for ADHD, its mechanisms of action have yet to be elucidated. We here seek to identify the white matter tracts that mediate MPH’s effect on beta oscillations. We implemented a double‐blind placebo‐controlled crossover design, where boys diagnosed with ADHD underwent behavioral and MEG measurements during a spatial attention task while on and off MPH. The results were compared with an age/IQ‐matched control group. Estimates of white matter tracts were obtained using diffusion tensor imaging (DTI). Via a stepwise model selection strategy, we identified the fiber tracts (regressors) significantly predicting values of the dependent variables of interest (i.e., oscillatory power, behavioral performance, and clinical symptoms): the anterior thalamic radiation (ATR), the superior longitudinal fasciculus (“parietal endings”) (SLFp), and superior longitudinal fasciculus (“temporal endings”) (SLFt). ADHD symptoms severity was associated with lower fractional anisotropy (FA) within the ATR. In addition, individuals with relatively higher FA in SLFp compared to SLFt, led to stronger behavioral effects of MPH in the form of faster and more accurate responses. Furthermore, the same parietotemporal FA gradient explained the effects of MPH on beta modulation: subjects with ADHD exhibiting higher FA in SLFp compared to SLFt also displayed greater effects of MPH on beta power during response preparation. Our data suggest that the behavioral deficits and aberrant oscillatory modulations observed in ADHD depend on a possibly detrimental structural connectivity imbalance within the SLF, caused by a diffusivity gradient in favor of parietal rather than temporal, fiber tracts

    Longitudinal changes of ADHD symptoms in association with white matter microstructure: A tract-specific fixel-based analysis

    Get PDF
    BACKGROUND: Variation in the longitudinal course of childhood attention deficit/hyperactivity disorder (ADHD) coincides with neurodevelopmental maturation of brain structure and function. Prior work has attempted to determine how alterations in white matter (WM) relate to changes in symptom severity, but much of that work has been done in smaller cross-sectional samples using voxel-based analyses. Using standard diffusion-weighted imaging (DWI) methods, we previously showed WM alterations were associated with ADHD symptom remission over time in a longitudinal sample of probands, siblings, and unaffected individuals. Here, we extend this work by further assessing the nature of these changes in WM microstructure by including an additional follow-up measurement (aged 18 - 34 years), and using the more physiologically informative fixel-based analysis (FBA). METHODS: Data were obtained from 139 participants over 3 clinical and 2 follow-up DWI waves, and analyzed using FBA in regions-of-interest based on prior findings. We replicated previously reported significant models and extended them by adding another time-point, testing whether changes in combined ADHD and hyperactivity-impulsivity (HI) continuous symptom scores are associated with fixel metrics at follow-up. RESULTS: Clinical improvement in HI symptoms over time was associated with more fiber density at follow-up in the left corticospinal tract (lCST) (t(max) = 1.092, standardized effect[SE] = 0.044, p(FWE) = 0.016). Improvement in combined ADHD symptoms over time was associated with more fiber cross-section at follow-up in the lCST (t(max) = 3.775, SE = 0.051, p(FWE) = 0.019). CONCLUSIONS: Aberrant white matter development involves both lCST micro- and macrostructural alterations, and its path may be moderated by preceding symptom trajectory

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Brouwer et al. identified genetic variants that affect rates of brain growth and atrophy. The genes are linked to early brain development and neurodegeneration and suggest involvement of metabolic processes.Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.Stress-related psychiatric disorders across the life spa
    corecore