561 research outputs found

    Latest quarkonium measurements in heavy-ion collisions with ALICE

    No full text
    International audienc

    Quarkonium measurements at forward rapidity with ALICE at the LHC

    No full text
    International audienc

    Measurement of charged jet cross section in pp collisions at √s = 5.02 TeV

    No full text
    The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of 5<pT<100 GeV/c in pp collisions at the center-of-mass energy of s√=5.02 TeV with the ALICE detector. The jets are reconstructed using the anti-kT algorithm with resolution parameters R=0.2, 0.3, 0.4, and 0.6 in the pseudorapidity range |η|<0.9−R. The charged jet cross sections are compared with the leading order (LO) and to next-to-leading order (NLO) perturbative Quantum ChromoDynamics (pQCD) calculations. It was found that the NLO calculations agree better with the measurements. The cross section ratios for different resolution parameters were also measured. These ratios increase from low pT to high pT and saturate at high pT, indicating that jet collimation is larger at high pT than at low pT. These results provide a precision test of pQCD predictions and serve as a baseline for the measurement in Pb−Pb collisions at the same energy to quantify the effects of the hot and dense medium created in heavy-ion collisions at the LHC

    Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN−−−√ = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval −1.07<ycms<0.14 and transverse momentum interval 2 <pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (QCP). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions

    Global polarization of Λ and ¯Λ hyperons in Pb–Pb collisions at the LHC

    No full text
    The global polarization of the Λ and Λ¯¯¯¯ hyperons is measured for Pb-Pb collisions at sNN−−−√ = 2.76 and 5.02 TeV recorded with the ALICE at the LHC. The results are reported differentially as a function of collision centrality and hyperon's transverse momentum (pT) for the range of centrality 5-50%, 0.5<pT<5 GeV/c, and rapidity |y|<0.5. The hyperon global polarization averaged for Pb-Pb collisions at sNN−−−√ = 2.76 and 5.02 TeV is found to be consistent with zero, ⟨PH⟩ (%) ≈ 0.01 ± 0.06 (stat.) ± 0.03 (syst.) in the collision centrality range 15-50%, where the largest signal is expected. The results are compatible with expectations based on an extrapolation from measurements at lower collision energies at RHIC, hydrodynamical model calculations, and empirical estimates based on collision energy dependence of directed flow, all of which predict the global polarization values at LHC energies of the order of 0.01%

    Measurement of Λ(1520) production in pp collisions at √s = 7 TeV and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The production of the Λ(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s√ = 7 TeV and in p-Pb collisions at sNN−−−√ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Λ(1520) → pK− and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (π, K, K0S, p, Λ) describes the shape of the Λ(1520) transverse momentum distribution up to 3.5 GeV/c in p-Pb collisions. In the framework of this model, this observation suggests that the Λ(1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Λ(1520) to the yield of the ground state particle Λ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the Λ(1520) yield

    Measurement of prompt D0, Λ+c, and Σ0,++c (2455) production in proton–proton collisions at √s = 13 TeV

    No full text
    The pT-differential production cross sections of prompt D0, Λ+c, and Σ0,++c(2455) charmed hadrons are measured at midrapidity (|y|<0.5) in pp collisions at s√=13 TeV. This is the first measurement of Σ0,++c production in hadronic collisions. Assuming the same production yield for the three Σ0,+,++c isospin states, the baryon-to-meson cross section ratios Σ0,+,++c/D0 and Λ+c/D0 are calculated in the transverse momentum (pT) intervals 2<pT<12 GeV/c and 1<pT<24 GeV/c. Values significantly larger than in e+e− collisions are observed, indicating for the first time that baryon enhancement in hadronic collisions also extends to the Σc. The feed-down contribution to Λ+c production from Σ0,+,++c is also reported and is found to be larger than in e+e− collisions. The data are compared with predictions from event generators and other phenomenological models, providing a sensitive test of the different charm-hadronisation mechanisms implemented in the models
    corecore