10,740 research outputs found

    Laplacian spectral characterization of roses

    Full text link
    A rose graph is a graph consisting of cycles that all meet in one vertex. We show that except for two specific examples, these rose graphs are determined by the Laplacian spectrum, thus proving a conjecture posed by Lui and Huang [F.J. Liu and Q.X. Huang, Laplacian spectral characterization of 3-rose graphs, Linear Algebra Appl. 439 (2013), 2914--2920]. We also show that if two rose graphs have a so-called universal Laplacian matrix with the same spectrum, then they must be isomorphic. In memory of Horst Sachs (1927-2016), we show the specific case of the latter result for the adjacency matrix by using Sachs' theorem and a new result on the number of matchings in the disjoint union of paths

    Directed strongly walk-regular graphs

    Full text link
    We generalize the concept of strong walk-regularity to directed graphs. We call a digraph strongly ℓ\ell-walk-regular with ℓ>1\ell >1 if the number of walks of length ℓ\ell from a vertex to another vertex depends only on whether the two vertices are the same, adjacent, or not adjacent. This generalizes also the well-studied strongly regular digraphs and a problem posed by Hoffman. Our main tools are eigenvalue methods. The case that the adjacency matrix is diagonalizable with only real eigenvalues resembles the undirected case. We show that a digraph Γ\Gamma with only real eigenvalues whose adjacency matrix is not diagonalizable has at most two values of ℓ\ell for which Γ\Gamma can be strongly ℓ\ell-walk-regular, and we also construct examples of such strongly walk-regular digraphs. We also consider digraphs with nonreal eigenvalues. We give such examples and characterize those digraphs Γ\Gamma for which there are infinitely many ℓ\ell for which Γ\Gamma is strongly ℓ\ell-walk-regular

    Distance-regular Cayley graphs with small valency

    Full text link
    We consider the problem of which distance-regular graphs with small valency are Cayley graphs. We determine the distance-regular Cayley graphs with valency at most 44, the Cayley graphs among the distance-regular graphs with known putative intersection arrays for valency 55, and the Cayley graphs among all distance-regular graphs with girth 33 and valency 66 or 77. We obtain that the incidence graphs of Desarguesian affine planes minus a parallel class of lines are Cayley graphs. We show that the incidence graphs of the known generalized hexagons are not Cayley graphs, and neither are some other distance-regular graphs that come from small generalized quadrangles or hexagons. Among some ``exceptional'' distance-regular graphs with small valency, we find that the Armanios-Wells graph and the Klein graph are Cayley graphs.Comment: 19 pages, 4 table

    On bounding the bandwidth of graphs with symmetry

    Get PDF
    We derive a new lower bound for the bandwidth of a graph that is based on a new lower bound for the minimum cut problem. Our new semidefinite programming relaxation of the minimum cut problem is obtained by strengthening the known semidefinite programming relaxation for the quadratic assignment problem (or for the graph partition problem) by fixing two vertices in the graph; one on each side of the cut. This fixing results in several smaller subproblems that need to be solved to obtain the new bound. In order to efficiently solve these subproblems we exploit symmetry in the data; that is, both symmetry in the min-cut problem and symmetry in the graphs. To obtain upper bounds for the bandwidth of graphs with symmetry, we develop a heuristic approach based on the well-known reverse Cuthill-McKee algorithm, and that improves significantly its performance on the tested graphs. Our approaches result in the best known lower and upper bounds for the bandwidth of all graphs under consideration, i.e., Hamming graphs, 3-dimensional generalized Hamming graphs, Johnson graphs, and Kneser graphs, with up to 216 vertices

    New bounds for the max-kk-cut and chromatic number of a graph

    Full text link
    We consider several semidefinite programming relaxations for the max-kk-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-kk-cut when k>2k>2 that is applicable to any graph. This bound is exploited to derive a new eigenvalue bound on the chromatic number of a graph. For regular graphs, the new bound on the chromatic number is the same as the well-known Hoffman bound; however, the two bounds are incomparable in general. We prove that the eigenvalue bound for the max-kk-cut is tight for several classes of graphs. We investigate the presented bounds for specific classes of graphs, such as walk-regular graphs, strongly regular graphs, and graphs from the Hamming association scheme

    Semidefinite programming and eigenvalue bounds for the graph partition problem

    Full text link
    The graph partition problem is the problem of partitioning the vertex set of a graph into a fixed number of sets of given sizes such that the sum of weights of edges joining different sets is optimized. In this paper we simplify a known matrix-lifting semidefinite programming relaxation of the graph partition problem for several classes of graphs and also show how to aggregate additional triangle and independent set constraints for graphs with symmetry. We present an eigenvalue bound for the graph partition problem of a strongly regular graph, extending a similar result for the equipartition problem. We also derive a linear programming bound of the graph partition problem for certain Johnson and Kneser graphs. Using what we call the Laplacian algebra of a graph, we derive an eigenvalue bound for the graph partition problem that is the first known closed form bound that is applicable to any graph, thereby extending a well-known result in spectral graph theory. Finally, we strengthen a known semidefinite programming relaxation of a specific quadratic assignment problem and the above-mentioned matrix-lifting semidefinite programming relaxation by adding two constraints that correspond to assigning two vertices of the graph to different parts of the partition. This strengthening performs well on highly symmetric graphs when other relaxations provide weak or trivial bounds

    The Laplacian spectral excess theorem for distance-regular graphs

    Get PDF
    The spectral excess theorem states that, in a regular graph G, the average excess, which is the mean of the numbers of vertices at maximum distance from a vertex, is bounded above by the spectral excess (a number that is computed by using the adjacency spectrum of G), and G is distance-regular if and only if equality holds. In this note we prove the corresponding result by using the Laplacian spectrum without requiring regularity of G

    A short proof of the odd-girth theorem

    Get PDF
    Recently, it has been shown that a connected graph Γ\Gamma with d+1d+1 distinct eigenvalues and odd-girth 2d+12d+1 is distance-regular. The proof of this result was based on the spectral excess theorem. In this note we present an alternative and more direct proof which does not rely on the spectral excess theorem, but on a known characterization of distance-regular graphs in terms of the predistance polynomial of degree dd
    • …
    corecore