10,740 research outputs found
Laplacian spectral characterization of roses
A rose graph is a graph consisting of cycles that all meet in one vertex. We
show that except for two specific examples, these rose graphs are determined by
the Laplacian spectrum, thus proving a conjecture posed by Lui and Huang [F.J.
Liu and Q.X. Huang, Laplacian spectral characterization of 3-rose graphs,
Linear Algebra Appl. 439 (2013), 2914--2920]. We also show that if two rose
graphs have a so-called universal Laplacian matrix with the same spectrum, then
they must be isomorphic. In memory of Horst Sachs (1927-2016), we show the
specific case of the latter result for the adjacency matrix by using Sachs'
theorem and a new result on the number of matchings in the disjoint union of
paths
Directed strongly walk-regular graphs
We generalize the concept of strong walk-regularity to directed graphs. We
call a digraph strongly -walk-regular with if the number of
walks of length from a vertex to another vertex depends only on whether
the two vertices are the same, adjacent, or not adjacent. This generalizes also
the well-studied strongly regular digraphs and a problem posed by Hoffman. Our
main tools are eigenvalue methods. The case that the adjacency matrix is
diagonalizable with only real eigenvalues resembles the undirected case. We
show that a digraph with only real eigenvalues whose adjacency matrix
is not diagonalizable has at most two values of for which can
be strongly -walk-regular, and we also construct examples of such
strongly walk-regular digraphs. We also consider digraphs with nonreal
eigenvalues. We give such examples and characterize those digraphs for
which there are infinitely many for which is strongly
-walk-regular
Distance-regular Cayley graphs with small valency
We consider the problem of which distance-regular graphs with small valency
are Cayley graphs. We determine the distance-regular Cayley graphs with valency
at most , the Cayley graphs among the distance-regular graphs with known
putative intersection arrays for valency , and the Cayley graphs among all
distance-regular graphs with girth and valency or . We obtain that
the incidence graphs of Desarguesian affine planes minus a parallel class of
lines are Cayley graphs. We show that the incidence graphs of the known
generalized hexagons are not Cayley graphs, and neither are some other
distance-regular graphs that come from small generalized quadrangles or
hexagons. Among some ``exceptional'' distance-regular graphs with small
valency, we find that the Armanios-Wells graph and the Klein graph are Cayley
graphs.Comment: 19 pages, 4 table
On bounding the bandwidth of graphs with symmetry
We derive a new lower bound for the bandwidth of a graph that is based on a
new lower bound for the minimum cut problem. Our new semidefinite programming
relaxation of the minimum cut problem is obtained by strengthening the known
semidefinite programming relaxation for the quadratic assignment problem (or
for the graph partition problem) by fixing two vertices in the graph; one on
each side of the cut. This fixing results in several smaller subproblems that
need to be solved to obtain the new bound. In order to efficiently solve these
subproblems we exploit symmetry in the data; that is, both symmetry in the
min-cut problem and symmetry in the graphs. To obtain upper bounds for the
bandwidth of graphs with symmetry, we develop a heuristic approach based on the
well-known reverse Cuthill-McKee algorithm, and that improves significantly its
performance on the tested graphs. Our approaches result in the best known lower
and upper bounds for the bandwidth of all graphs under consideration, i.e.,
Hamming graphs, 3-dimensional generalized Hamming graphs, Johnson graphs, and
Kneser graphs, with up to 216 vertices
New bounds for the max--cut and chromatic number of a graph
We consider several semidefinite programming relaxations for the max--cut
problem, with increasing complexity. The optimal solution of the weakest
presented semidefinite programming relaxation has a closed form expression that
includes the largest Laplacian eigenvalue of the graph under consideration.
This is the first known eigenvalue bound for the max--cut when that is
applicable to any graph. This bound is exploited to derive a new eigenvalue
bound on the chromatic number of a graph. For regular graphs, the new bound on
the chromatic number is the same as the well-known Hoffman bound; however, the
two bounds are incomparable in general. We prove that the eigenvalue bound for
the max--cut is tight for several classes of graphs. We investigate the
presented bounds for specific classes of graphs, such as walk-regular graphs,
strongly regular graphs, and graphs from the Hamming association scheme
Semidefinite programming and eigenvalue bounds for the graph partition problem
The graph partition problem is the problem of partitioning the vertex set of
a graph into a fixed number of sets of given sizes such that the sum of weights
of edges joining different sets is optimized. In this paper we simplify a known
matrix-lifting semidefinite programming relaxation of the graph partition
problem for several classes of graphs and also show how to aggregate additional
triangle and independent set constraints for graphs with symmetry. We present
an eigenvalue bound for the graph partition problem of a strongly regular
graph, extending a similar result for the equipartition problem. We also derive
a linear programming bound of the graph partition problem for certain Johnson
and Kneser graphs. Using what we call the Laplacian algebra of a graph, we
derive an eigenvalue bound for the graph partition problem that is the first
known closed form bound that is applicable to any graph, thereby extending a
well-known result in spectral graph theory. Finally, we strengthen a known
semidefinite programming relaxation of a specific quadratic assignment problem
and the above-mentioned matrix-lifting semidefinite programming relaxation by
adding two constraints that correspond to assigning two vertices of the graph
to different parts of the partition. This strengthening performs well on highly
symmetric graphs when other relaxations provide weak or trivial bounds
The Laplacian spectral excess theorem for distance-regular graphs
The spectral excess theorem states that, in a regular graph G, the average
excess, which is the mean of the numbers of vertices at maximum distance from a
vertex, is bounded above by the spectral excess (a number that is computed by
using the adjacency spectrum of G), and G is distance-regular if and only if
equality holds. In this note we prove the corresponding result by using the
Laplacian spectrum without requiring regularity of G
A short proof of the odd-girth theorem
Recently, it has been shown that a connected graph with
distinct eigenvalues and odd-girth is distance-regular. The proof of
this result was based on the spectral excess theorem. In this note we present
an alternative and more direct proof which does not rely on the spectral excess
theorem, but on a known characterization of distance-regular graphs in terms of
the predistance polynomial of degree
- …