11,614 research outputs found

    Direct Determinations of the Redshift Behavior of the Pressure, Energy Density, and Equation of State of the Dark Energy and the Acceleration of the Universe

    Full text link
    One of the goals of current cosmological studies is the determination of the expansion and acceleration rates of the universe as functions of redshift, and the determination of the properties of the dark energy that can explain these observations. Here the expansion and acceleration rates are determined directly from the data, without the need for the specification of a theory of gravity, and without adopting an a priori parameterization of the form or redshift evolution of the dark energy. We use the latest set of distances to SN standard candles from Riess et al. (2004), supplemented by data on radio galaxy standard ruler sizes, as described by Daly and Djorgovski (2003, 2004). We find that the universe transitions from acceleration to deceleration at a redshift of about 0.4. The standard "concordance model" provides a reasonably good fit to the dimensionless expansion rate as a function of redshift, though it fits the dimensionless acceleration rate as a function of redshift less well. The expansion and acceleration rates are then combined with a theory of gravity to determine the pressure, energy density, and equation of state of the dark energy as functions of redshift. Adopting General Relativity as the correct theory of gravity, the redshift trends for the pressure, energy density, and equation of state of the dark energy out to redshifts of about one are determined, and are found to be generally consistent with the concordance model.Comment: 8 pages, 5 figures. Invited presentation at Coral Gables 200

    Reducing the risk of osteoporosis and fractures : an algorithm for exercise prescription and therapy

    Full text link

    Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray Computed Tomography and numerical modelling

    No full text
    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray Computed Tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilised the technique for visualising water in soil pore spaces. Here we utilise this method to visualise the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods e.g. pressure plates. The water, soil and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggests that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared to bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models

    Persistent pain after caesarean section and its association with maternal anxiety and socioeconomic background

    Get PDF
    Background: Pain, both from the surgical site, and from other sources such as musculoskeletal backache, can persist after caesarean section. In this study of a predominantly socially deprived population we have sought to prospectively examine the association between antenatal maternal anxiety and socioeconomic background and the development of persistent pain of all sources after caesarean section. Methods: Demographic details and an anxiety questionnaire were completed by 205 women before elective caesarean section. On the first postoperative day, pain scores were recorded, and at four months patients were asked to complete a Brief Pain Inventory and an Edinburgh Postnatal Depression Score. Results: Of 205 parturients recruited, 186 records were complete at the hospital admission phase and 98 (52.7%) were complete at the four-month follow-up phase. At recruitment, 15.1% reported pain. At four months 41.8% (95% CI 32.1 to 51.6%) reported pain, of whom pain was a new finding in 35.7% (95% CI 26.2 to 45.2%). Antenatal anxiety was not a significant predictor of severity of new pain at four months (P=0.43 for state anxiety, P=0.52 for trait anxiety). However, four-month pain severity did correlate with social deprivation (P=0.011), postnatal depression (P<0.001) and pain at 24 h (P=0.018). Conclusion: Persistent pain from a variety of sources after caesarean section is common. Our findings do not support the use of antenatal anxiety scoring to predict persistent pain in this setting, but suggest that persistent pain is influenced by acute pain, postnatal depression and socioeconomic deprivation

    Effects of a multi-component exercise program and calcium–vitamin-D3-fortified milk on bone mineral density in older men : a randomised controlled trial

    Full text link
    Summary We examined the independent and combined effects of a multi-component exercise program and calcium&ndash;vitamin-D3-fortified milk on bone mineral density (BMD) in older men. Exercise resulted in a 1.8% net gain in femoral neck BMD, but additional calcium&ndash;vitamin D3 did not enhance the response in this group of older well-nourished men.Introduction This 12-month randomised controlled trial assessed whether calcium&ndash;vitamin-D3-fortified milk could enhance the effects of a multi-component exercise program on BMD in older men.Methods Men (n&thinsp; =&thinsp;180) aged 50&ndash;79 years were randomised into: (1) exercise + fortified milk; (2) exercise; (3) fortified milk; or (4) controls. Exercise consisted of high intensity progressive resistance training with weight-bearing impact exercise. Men assigned to fortified milk consumed 400 mL/day of low fat milk providing an additional 1,000 mg/day calcium and 800 IU/day vitamin D3. Femoral neck (FN), total hip, lumbar spine and trochanter BMD and body composition (DXA), muscle strength 25-hydroxyvitamin D and parathyroid hormone (PTH) were assessed.Results There were no exercise-by-fortified milk interactions at any skeletal site. Exercise resulted in a 1.8% net gain in FN BMD relative to no-exercise (p&thinsp;&lt;&thinsp;0.001); lean mass (0.6 kg, p&thinsp;&lt;&thinsp;0.05) and muscle strength (20&ndash;52%, p&thinsp;&lt;&thinsp;0.001) also increased in response to exercise. For lumbar spine BMD, there was a net 1.4&ndash;1.5% increase in all treatment groups relative to controls (all p&thinsp;&lt;&thinsp;0.01). There were no main effects of fortified milk at any skeletal site.Conclusion A multi-component community-based exercise program was effective for increasing FN BMD in older men, but additional calcium&ndash;vitamin D3 did not enhance the osteogenic response.<br /

    Challenges in imaging and predictive modeling of rhizosphere processes

    Get PDF
    Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes

    Mid-femoral and mid-tibial muscle cross-sectional area as predictors of tibial bone strength in middle-aged and older men

    Full text link
    While it is widely acknowledged that bones adapt to the site-specific prevalent loading environment, reasonable ways to estimate skeletal loads are not necessarily available. For long bone shafts, muscles acting to bend the bone may provide a more appropriate surrogate of the loading than muscles expected to cause compressive loads. Thus, the aim of this study was to investigate whether mid-thigh muscle cross-sectional area (CSA) was a better predictor of tibial mid-shaft bone strength than mid-tibia muscle CSA in middle aged and older men. 181 Caucasian men aged 50&ndash;79 years (mean&plusmn;SD; 61&plusmn;7 years) participated in this study. Mid-femoral and mid-tibial bone traits cortical area , density weighted polar moment of area and muscle CSA [cm&sup2;] were assessed with computed tomography. Tibial bone traits were positively associated with both the mid-femur (r=0.44 to 0.46, P&lt;0.001) and the mid-tibia muscle CSA (r=0.35 to 0.37, P&lt;0.001). Multivariate regression analysis, adjusting for age, weight, physical activity and femoral length, indicated that mid-femur muscle CSA predicted tibial mid-shaft bone strength indices better thn mid-tibia muscle CSA. In conclusion, the association between a given skeletal site and functionally adjacent muscles may provide a meaningful probe of the site-specific effect of loading on bone

    Quantifying the relationship between mechanical loading and the skeletal response in pre- and early-pubertal girls

    Full text link
    PURPOSEBefore exercise prescription for bone health can be recommended, the relationship between mechanical loading characteristics and the skeletal response need to be quantified. We asked i) does moderate impact exercise result in a greater gain in BMC than low impact exercise, ii) what are the loading characteristics associated with a moderate and low impact exercise program and does this differ from non-structured play?, and iii) does loading history affect the osteogenic response to a moderate or low impact program? METHODSSixty-eight pre- and early-pubertal girls (aged 8.9 +/- 0.2 yrs) were randomized to take part in a moderate or low impact exercise program 3 times/wk for 8.5 mnths. The number and type of loads associated with the exercise classes and non-structured play (recess) were assessed from video footage. The magnitude of load was assessed using a pedar in-sole mobile system. Hours of moderate and high impact organized sport were assessed from a physical activity questionnaire. RESULTSThe moderate and low impact exercise programs consisted of -400 impacts per class, but the jumping, hopping and dynamic activities performed during the moderate impact program produced forces ranging from 2 to 4 times body weight (BW) compared to -1 BW for the low impact program. Moderate impact exercise resulted in a 2.7% greater gain in BMC at the tibia compared to the low impact exercise. The moderate impact exercise program consisted of fewer low impacts (1-2 BW) and a higher number of moderate impacts (2-4BW) compared to those typically performed during non-structured play. There were greater gains in BMC in subjects participating in the moderate versus the low impact exercise programs who participated in 2 to 3 hours of moderate impact sports outside school (2.5% to 4.5%, p CONCLUSIONApproximately 400 impacts ranging 2-4 BW, 3 times/wk was enough stimuli to result in an osteogenic response in normally active girls; even in those actively involved in moderate impact sports outside school.<br /

    What Does it Mean to Design? A Qualitative Investigation of Design Professionals' Experiences

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95041/1/j.2168-9830.2012.tb00048.x.pd
    • …
    corecore