1,268 research outputs found

    Mid-femoral and mid-tibial muscle cross-sectional area as predictors of tibial bone strength in middle-aged and older men

    Full text link
    While it is widely acknowledged that bones adapt to the site-specific prevalent loading environment, reasonable ways to estimate skeletal loads are not necessarily available. For long bone shafts, muscles acting to bend the bone may provide a more appropriate surrogate of the loading than muscles expected to cause compressive loads. Thus, the aim of this study was to investigate whether mid-thigh muscle cross-sectional area (CSA) was a better predictor of tibial mid-shaft bone strength than mid-tibia muscle CSA in middle aged and older men. 181 Caucasian men aged 50–79 years (mean±SD; 61±7 years) participated in this study. Mid-femoral and mid-tibial bone traits cortical area , density weighted polar moment of area and muscle CSA [cm²] were assessed with computed tomography. Tibial bone traits were positively associated with both the mid-femur (r=0.44 to 0.46, P<0.001) and the mid-tibia muscle CSA (r=0.35 to 0.37, P<0.001). Multivariate regression analysis, adjusting for age, weight, physical activity and femoral length, indicated that mid-femur muscle CSA predicted tibial mid-shaft bone strength indices better thn mid-tibia muscle CSA. In conclusion, the association between a given skeletal site and functionally adjacent muscles may provide a meaningful probe of the site-specific effect of loading on bone

    Physical activity increases bone mass during growth

    Get PDF
    BACKGROUND: The incidence of fragility fractures has increased during the last half of the 1990's. One important determinant of fractures is the bone mineral content (BMC) or bone mineral density (BMD), the amount of mineralised bone. If we could increase peak bone mass (the highest value of BMC reached during life) and/or decrease the age-related bone loss, we could possibly improve the skeletal resistance to fracture. OBJECTIVE: This review evaluates the importance of exercise as a strategy to improve peak bone mass, including some aspects of nutrition. DESIGN: PUBLICATIONS WITHIN THE FIELD WERE SEARCHED THROUGH MEDLINE (PUBMED) USING THE SEARCH WORDS: exercise, physical activity, bone mass, bone mineral content, bone mineral density, BMC, BMD, skeletal structure and nutrition. We included studies dealing with exercise during growth and young adolescence. We preferably based our inferences on randomised controlled trials (RCT), which provide the highest level of evidence. RESULTS: Exercise during growth increases peak bone mass. Moderate intensity exercise intervention programs are beneficial for the skeletal development during growth. Adequate nutrition must accompany the exercise to achieve the most beneficial skeletal effects by exercise. CONCLUSION: Exercise during growth seems to enhance the building of a stronger skeleton through a higher peak bone mass and a larger bone size

    Associations between data-driven lifestyle profiles and cognitive function in the AusDiab study

    Full text link
    Background: Mounting evidence highlights the importance of combined modifiable lifestyle factors in reducing risk of cognitive decline and dementia. Several a priori additive scoring approaches have been established; however, limited research has employed advanced data-driven approaches to explore this association. This study aimed to examine the association between data-driven lifestyle profiles and cognitive function in community-dwelling Australian adults. Methods: A cross-sectional study of 4561 Australian adults (55.3% female, mean age 60.9 ± 11.3 years) was conducted. Questionnaires were used to collect self-reported data on diet, physical activity, sedentary time, smoking status, and alcohol consumption. Cognitive testing was undertaken to assess memory, processing speed, and vocabulary and verbal knowledge. Latent Profile Analysis (LPA) was conducted to identify subgroups characterised by similar patterns of lifestyle behaviours. The resultant subgroups, or profiles, were then used to further explore associations with cognitive function using linear regression models and an automatic Bolck, Croon & Hagenaars (BCH) approach. Results: Three profiles were identified: (1) “Inactive, poor diet” (76.3%); (2) “Moderate activity, non-smokers” (18.7%); and (3) “Highly active, unhealthy drinkers” (5.0%). Profile 2 “Moderate activity, non-smokers” exhibited better processing speed than Profile 1 “Inactive, poor diet”. There was also some evidence to suggest Profile 3 “Highly active, unhealthy drinkers” exhibited poorer vocabulary and verbal knowledge compared to Profile 1 and poorer processing speed and memory scores compared to Profile 2. Conclusion: In this population of community-dwelling Australian adults, a sub-group characterised by moderate activity levels and higher rates of non-smoking had better cognitive function compared to two other identified sub-groups. This study demonstrates how LPA can be used to highlight sub-groups of a population that may be at increased risk of dementia and benefit most from lifestyle-based multidomain intervention strategies

    Strategies and challenges associated with recruiting retirement village communities and residents into a group exercise intervention

    Get PDF
    Background: Randomized controlled trials (RCTs) provide the highest level of scientific evidence, but successful participant recruitment is critical to ensure the external and internal validity of results. This study describes the strategies associated with recruiting older adults at increased falls risk residing in retirement villages into an 18-month cluster RCT designed to evaluate the effects of a dual-task exercise program on falls and physical and cognitive function. Methods: Recruitment of adults aged ≄65 at increased falls risk residing within retirement villages (size 60–350 residents) was initially designed to occur over 12 months using two distinct cohorts (C). Recruitment occurred via a three-stage approach that included liaising with: 1) village operators, 2) independent village managers, and 3) residents. To recruit residents, a variety of different approaches were used, including distribution of information pack, on-site presentations, free muscle and functional testing, and posters displayed in common areas. Results: Due to challenges with recruitment, three cohorts were established between February 2014 and April 2015 (14 months). Sixty retirement villages were initially invited, of which 32 declined or did not respond, leaving 28 villages that expressed interest. A total of 3947 individual letters of invitation were subsequently distributed to residents of these villages, from which 517 (13.1%) expressions of interest (EOI) were received. Across three cohorts with different recruitment strategies adopted there were only modest differences in the number of EOI received (10.5 to 15.3%), which suggests that no particular recruitment approach was most effective. Following the initial screening of these residents, 398 (77.0%) participants were deemed eligible to participate, but a final sample of 300 (58.0% of the 517 EOI) consented and was randomized; 7.6% of the 3947 residents invited. Principal reasons for not participating, despite being eligible, were poor health, lack of time and no GP approval. Conclusion: This study highlights that there are significant challenges associated with recruiting sufficient numbers of older adults from independent living retirement villages into an exercise intervention designed to improve health and well-being. Trial registration: Australian New Zealand Clinical Trials Registry: ACTRN12613001 161718. Date registered 23rd October 2013

    Impact of fractional excretion of sodium on a single morning void urine collection as an estimate of 24-hour urine sodium.

    Get PDF
    The standard for assessing dietary sodium intake is to measure 24-hour urine sodium. On average, 93% of daily sodium intake is excreted over 24-hours. Expense and difficulties in obtaining complete 24-hour collections have led to the measurement of sodium concentration in spot and single-void urine samples, using predictive equations to estimate 24-hour urine sodium. Although multiple predictive equations have been developed, in addition to having an average bias, all the equations overestimate 24-hour sodium at lower levels of 24-hour sodium and underestimate 24-hour urine sodium at higher levels of 24-hour sodium. One of the least biased estimating equations is the INTERSALT equation, which incorporates a spot urine creatinine concentration. The authors hypothesized that differential fractional excretion of sodium (FeNa)(derived from a morning void collection) relative to creatinine would impact on the accuracy of the INTERSALT equation in estimating 24-hour urine sodium. In a prospective study of 139 adults aged 65 years and over, three sequential morning void and 24-hour urine samples were examined. There was a significant correlation between increasing FENa and the difference between estimated and measured 24-hours urine sodium (r = 0.358, P < .01). In the lowest quartile of FENa, the INTERSALT equation overestimated 24-hour urine sodium, but underestimated 24-hour urine sodium with greater magnitude in each of the subsequent quartiles of FENa. Differential excretion of sodium relative to creatinine, potentially impacted by renal blood flow and hydration, among other factors, affected the accuracy of the INTERSALT equation. Additional research may refine the INTERSALT and other predictive equations to increase their accuracy

    The inevitable youthfulness of known high-redshift radio galaxies

    Full text link
    Radio galaxies can be seen out to very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio-galaxies must be seen when the lobes are less than 10^7 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result helps to explain many observed trends of radio-galaxy properties with redshift [(i) the `alignment effect' of optical emission along radio-jet axes, (ii) the increased distortion in radio structure, (iii) the decrease in physical sizes, (iv) the increase in radio depolarisation, and (v) the increase in dust emission] without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.Comment: To appear in Nature. 4 pages, 2 colour figures available on request. Also available at http://www-astro.physics.ox.ac.uk/~km

    Fast Inhibition of Glutamate-Activated Currents by Caffeine

    Get PDF
    Background: Caffeine stimulates calcium-induced calcium release (CICR) in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. Methodology/Principal Findings: Using the whole-cell patch-clamp technique we found that caffeine (20 mM) reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs) in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM) did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. Conclusions/Significance: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses

    Plant but not animal sourced nitrate intake is associated with lower dementia-related mortality in the Australian Diabetes, Obesity, and Lifestyle Study

    Full text link
    Introduction: Dietary nitrate is potentially beneficial for cardiovascular, cerebrovascular, and nervous systems due to its role as a nitric oxide (NO) precursor. Increased nitrate intake improves cardiovascular health and therefore could protect against dementia, given the cardiovascular-dementia link. Objective: To investigate the association between source-dependent nitrate intake and dementia-related mortality. As individuals with diabetes are at higher risk of dementia, a secondary aim was to investigate if the associations between nitrate and dementia varied by diabetes mellitus (DM) and pre-diabetes status. Methods: This study involved 9,149 participants aged ≄25 years from the well-characterised Australian Diabetes, Obesity, and Lifestyle (AusDiab) Study followed over a period of 17 years. Intakes of plant-sourced, vegetable-sourced, naturally occurring animal-sourced nitrate, and processed meat (where nitrate is an allowed additive)-sourced nitrate were assessed from a 74-item food frequency questionnaire completed by participants at baseline and nitrate databases were used to estimate nitrate from these different dietary sources. Associations between source-dependent nitrate intake and dementia-related mortality were assessed using multivariable-adjusted Cox proportional hazards models adjusted for demographics, lifestyle, and dietary factors. Results: Over 17 years of follow-up, 93 (1.0%) dementia-related deaths occurred of 1,237 (13.5%) total deaths. In multivariable-adjusted models, participants with the highest intakes of plant-sourced nitrate (median intake 98 mg/day) had a 57% lower risk of dementia-related mortality [HR (95% CI): 0.43 (0.22, 0.87)] compared to participants with lowest intakes of plant-sourced nitrate (median intake 35 mg/day). A 66% lower risk was also seen for higher intakes of vegetable-sourced nitrate [HR (95% CI): 0.34 (0.17, 0.66)]. No association was observed for animal-sourced nitrate, but the risk was two times higher amongst those who consumed the most processed meat-sourced nitrate intake [HR (95%): 2.10 (1.07, 4.12)]. The highest intake of vegetable-sourced nitrate was associated with a lower risk of dementia-related mortality for those with and without DM and pre-diabetes. Conclusion: Encouraging the intake of nitrate-rich vegetables, such as green leafy vegetables and beetroot, may lower the risk of dementia-related mortality, particularly in individuals with (pre-) diabetes who are at a higher dementia risk

    Concurrent exergaming and transcranial direct current stimulation to improve balance in people with Parkinson's disease: study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: People with Parkinson\u27s disease (PD) commonly experience postural instability, resulting in poor balance and an increased risk of falls. Exercise-based video gaming (exergaming) is a form of physical training that is delivered through virtual reality technology to facilitate motor learning and is efficacious in improving balance in aged populations. In addition, studies have shown that anodal transcranial direct current stimulation (a-tDCS), when applied to the primary motor cortex, can augment motor learning when combined with physical training. However, no studies have investigated the combined effects of exergaming and tDCS on balance in people with PD. METHODS/DESIGN: Twenty-four people with mild to moderate PD (Hoehn and Yahr scale score 2-4) will be randomly allocated to receive one of three interventions: (1) exergaming + a-tDCS, (2) exergaming + sham a-tDCS or (3) usual care. Participants in each exergaming group will perform two training sessions per week for 12 weeks. Each exergaming session will consist of a series of static and dynamic balance exercises using a rehabilitation-specific software programme (Jintronix) and 20&nbsp;minutes of either sham or real a-tDCS (2&nbsp;mA) delivered concurrently. Participants allocated to usual care will be asked to maintain their normal daily physical activities. All outcome measures will be assessed at baseline and at 6 weeks (mid-intervention), 12 weeks (post-intervention) and 24 weeks (3-month follow-up) after baseline. The primary outcome measure will be the Limits of Stability Test. Secondary outcomes will include measures of static balance, leg strength, functional capacity, cognitive task-related cortical activation, corticospinal excitability and inhibition, and cognitive inhibition. DISCUSSION: This will be the first trial to target balance in people with PD with combined exergaming and a-tDCS. We hypothesise that improvements in balance, functional and neurophysiological outcome measures, and neurocognitive outcome measures will be greater and longer-lasting following concurrent exergaming and a-tDCS than in those receiving sham tDCS or usual care
    • 

    corecore