5 research outputs found

    Linking oceanographic products to fisheries advice

    No full text
    This report focuses on encouraging usage of Copernicus Marine Service products by fisheries users and scientists, and consists of a number of key studies where numerous EuroSea activities support the uptakes of Copernicus Marine Service data products, focusing on Atlantic mackerel, European hake and Atlantic tuna. The report also contains an intercomparison study focused on oceanographic equipment (CTD) to determine the most suitable sensor for a fisheries observing system. A number of recommendations are provided on how to support the use of Copernicus Marine Service products in fisheries science, such as the production of new Best Practices, stronger partnerships (fisheries scientists and oceanographers) and co-development of ocean indicators

    Diurnal to interannual variability in the Northeast Atlantic from hydrographic transects and fixed time-series across the Rockall Trough

    Get PDF
    The southern entrance to the Rockall Trough is subject to a complex set of dynamic processes, influenced by Atlantic gyre interactions, the North Atlantic Current, slope boundary currents, variable wind stress forcing, mesoscale activity, and a changing supply of modified water masses formed elsewhere in the Atlantic. These processes drive large temporal and spatial variations, and mixing of surface and intermediate water mass properties that advect through the Trough and drive variations in the deeper waters circulating around it. Here, we investigate variability across the southern and central Rockall Trough from standard hydrographic sections (2006–2022) and deepwater moored subsurface measurements, to better understand changes in water column characteristics and water mass modification during advection through the Rockall Trough and track the aftermath of recent freshening events. Rapid and longer-term physical changes are assessed along with spatial variability and watermass interaction. Interannual variability is large across intermediate depths, deeper circulations are regenerated and a salinity core associated with the eastern boundary current is detailed. Establishing, maintaining, monitoring and analysis of observational ocean time-series datasets are a fundamental requirement for managing and conserving crucial biological resources and are key to understanding oceanic and earth system change

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore