10,926 research outputs found

    Poverty and Aspirations Failure

    Get PDF
    We develop a theoretical framework to study the psychology of poverty and 'aspirations failure'. In our framework, the rich and the poor share the same preferences - and also a behavioral bias in setting aspirations. Greater downside risks imposed by poverty exacerbates the effects of this behavioral bias: the poor are more susceptible to both an aspirations failure and pessimism about the likelihood of achieving success. Poverty limits the set of people whose life experiences the poor consider relevant for forming their own beliefs and aspirations. Mitigating behavioral poverty traps require policies which go beyond reducing material deprivation.Reference-dependent Preferences;Aspirations;Persistent Poverty;Locus of control;Simillarity and Belief Formation

    Optimal Clustering under Uncertainty

    Full text link
    Classical clustering algorithms typically either lack an underlying probability framework to make them predictive or focus on parameter estimation rather than defining and minimizing a notion of error. Recent work addresses these issues by developing a probabilistic framework based on the theory of random labeled point processes and characterizing a Bayes clusterer that minimizes the number of misclustered points. The Bayes clusterer is analogous to the Bayes classifier. Whereas determining a Bayes classifier requires full knowledge of the feature-label distribution, deriving a Bayes clusterer requires full knowledge of the point process. When uncertain of the point process, one would like to find a robust clusterer that is optimal over the uncertainty, just as one may find optimal robust classifiers with uncertain feature-label distributions. Herein, we derive an optimal robust clusterer by first finding an effective random point process that incorporates all randomness within its own probabilistic structure and from which a Bayes clusterer can be derived that provides an optimal robust clusterer relative to the uncertainty. This is analogous to the use of effective class-conditional distributions in robust classification. After evaluating the performance of robust clusterers in synthetic mixtures of Gaussians models, we apply the framework to granular imaging, where we make use of the asymptotic granulometric moment theory for granular images to relate robust clustering theory to the application.Comment: 19 pages, 5 eps figures, 1 tabl

    Design of an integrated shallow water wave experiment

    Get PDF
    The experimental design and instrumentation for an integrated shallow-water surface gravity wave experiment is discussed. The experiment required the measurement of the water surface elevation, meteorological parameters, and directional spectra at a number of locations on a shallow lake. In addition, to acquire data under a wide range of conditions, an experimental period of three years was required. A system of telephone and radio modem links were installed to enable real-time monitoring of instrument performance at eight separate measurement locations on the lake. This system also enabled logging sessions to be optimized to ensure the maximum possible data return from this extended experimentIEEE Oceanic Engineering Societ

    Brownian ratchet in a thermal bath driven by Coulomb friction

    Full text link
    The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetric wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demonstrate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We have realized a new granular ratchet experiment where both these ratchet effects are observed, as well as the predicted inversion at their crossover. Our discovery paves the way to the realization of micro and sub-micrometer Brownian motors in an equilibrium fluid, based purely upon nano-friction.Comment: main paper: 4 pages and 4 figures; supplemental material joined at the end of the paper; a movie of the experiment can be viewed http://www.youtube.com/watch?v=aHrdY4BC71k ; all the material has been submitted for publication [new version with substantial changes in the order of the presentation of the results; differences with previous works have been put in evidence

    Constitutive Association of Tie1 and Tie2 with Endothelial Integrins is Functionally Modulated by Angiopoietin-1 and Fibronectin

    Get PDF
    Functional cross-talk between Tie2 and Integrin signaling pathways is essential to coordinate endothelial cell adhesion and migration in response to the extracellular matrix, yet the mechanisms behind this phenomenon are unclear. Here, we examine the possibility that receptor cross-talk is driven through uncharacterized Tie-integrin interactions on the endothelial surface. Using a live cell FRET-based proximity assay, we monitor Tie-integrin receptor recognition and demonstrate that both Tie1 and Tie2 readily associate with integrins α5ß1 and αVß3 through their respective ectodomains. Although not required, Tie2-integrin association is significantly enhanced in the presence of the extracellular component and integrin ligand fibronectin. In vitro binding assays with purified components reveal that Tie-integrin recognition is direct, and further demonstrate that the receptor binding domain of the Tie2 ligand Ang-1, but not the receptor binding domain of Ang-2, can independently associate with α5ß1 or αVß3. Finally, we reveal that cooperative Tie/integrin interactions selectively stimulate ERK/MAPK signaling in the presence of both Ang-1 and fibronectin, suggesting a molecular mechanism to sensitize Tie2 to extracellular matrix. We provide a mechanistic model highlighting the role of receptor localization and association in regulating distinct signaling cascades and in turn, the angiogenic switch
    corecore