7,166 research outputs found

    Cascade atom in high-Q cavity: The spectrum for non-Markovian decay

    Full text link
    The spontaneous emission spectrum for a three level cascade configuration atom in a single mode high-Q cavity coupled to a zero temperature reservoir of continuum external modes is determined from the atom-cavity mode master equation using the quantum regression theorem. Initially the atom is in its upper state and the cavity mode empty of photons. Following Glauber, the spectrum is defined via the response of a detector atom. Spectra are calculated for the detector located inside the cavity (case A), outside the cavity end mirror (Case B-end emission), or placed for emission out the side of the cavity (Case C). The spectra for case A and case B are found to be essentially the same. In all the cases the predicted lineshapes are free of instrumental effects and only due to cavity decay. Spectra are presented for intermediate and strong coupling regime situations (where both atomic transitions are resonant with the cavity frequency), for cases of non-zero cavity detuning, and for cases where the two atomic transition frequencies differ. The spectral features for Cases B(A) and C are qualitatively similar, with six spectral peaks for resonance cases and eight for detuned cases. These general features of the spectra can be understood via the dressed atom model. However, Case B and C spectra differ in detail, with the latter exhibiting a deep spectral hole at the cavity frequency due to quantum interference effects.Comment: 29 pages, 14 figures; v2: very minor correction to two equations, thicker lines in some figure

    New spin squeezing and other entanglement tests for two mode systems of identical bosons

    Get PDF
    For any quantum state representing a physical system of identical particles, the density operator must satisfy the symmetrization principle (SP) and conform to super-selection rules (SSR) that prohibit coherences between differing total particle numbers. Here we consider bi-partitite states for massive bosons, where both the system and sub-systems are modes (or sets of modes) and particle numbers for quantum states are determined from the mode occupancies. Defining non-entangled or separable states as those prepared via local operations (on the sub-systems) and classical communication processes, the sub-system density operators are also required to satisfy the SP and conform to the SSR, in contrast to some other approaches. Whilst in the presence of this additional constraint the previously obtained sufficiency criteria for entanglement, such as the sum of the ˆSx and ˆSy variances for the Schwinger spin components being less than half the mean boson number, and the strong correlation test of |haˆm (bˆ†)ni|2 being greater than h(aˆ†)maˆm (bˆ†)nbˆni(m, n = 1, 2, . . .) are still valid, new tests are obtained in our work. We show that the presence of spin squeezing in at least one of the spin components ˆSx , ˆSy and ˆSz is a sufficient criterion for the presence of entanglement and a simple correlation test can be constructed of |haˆm (bˆ†)ni|2 merely being greater than zero.We show that for the case of relative phase eigenstates, the new spin squeezing test for entanglement is satisfied (for the principle spin operators), whilst the test involving the sum of the ˆSx and ˆSy variances is not. However, another spin squeezing entanglement test for Bose–Einstein condensates involving the variance in ˆSz being less than the sum of the squared mean values for ˆSx and ˆSy divided by the boson number was based on a concept of entanglement inconsistent with the SP, and here we present a revised treatment which again leads to spin squeezing as an entanglement test

    Model Independent Primordial Power Spectrum from Maxima, Boomerang, and DASI Data

    Full text link
    A model-independent determination of the primordial power spectrum of matter density fluctuations could uniquely probe physics of the very early universe, and provide powerful constraints on inflationary models. We parametrize the primordial power spectrum As2(k)A_s^2(k) as an arbitrary function, and deduce its binned amplitude from the cosmic microwave background radiation anisotropy (CMB) measurements of Maxima, Boomerang, and DASI. We find that for a flat universe with As2(k)=1A_s^2(k)=1 (scale-invariant) for scales k<0.001k<0.001 h/Mpc, the primordial power spectrum is marginally consistent with a scale-invariant Harrison-Zeldovich spectrum. However, we deduce a rise in power compared to a scale-invariant power spectrum for 0.001 h/{Mpc} \la k \la 0.01 h/{Mpc}. Our results are consistent with large-scale structure data, and seem to suggest that the current observational data allow for the possibility of unusual physics in the very early universe.Comment: substantially revised and final version, accepted by Ap

    Tests for Einstein-Podolsky-Rosen steering in two-mode systems of identical massive bosons

    Get PDF
    In a previous paper tests for entanglement for two-mode systems involving identical massive bosons were obtained. In the present paper we consider sufficiency tests for Einstein-Podolsky-Rosen (EPR) steering in such systems. We find that spin squeezing in any spin component, a Bloch vector test, the Hillery-Zubairy planar spin variance test, and squeezing in two-mode quadratures all show that the quantum state is EPR steerable. We also find a generalization of the Hillery-Zubairy planar spin variance test for EPR steering. The relation to previous correlation tests is discussed. This paper is based on a detailed classification of quantum states for bipartite systems. States for bipartite composite systems are categorized in quantum theory as either separable or entangled, but the states can also be divided differently into Bell local or Bell nonlocal states in terms of local hidden variable theory (LHVT). For the Bell local states there are three cases depending on whether both, one of or neither of the LHVT probabilities for each subsystem are also given by a quantum probability involving subsystem density operators. Cases where one or both are given by a quantum probability are known as local hidden states (LHSs) and such states are nonsteerable. The steerable states are the Bell local states where there is no LHS, or the Bell nonlocal states. The relationship between the quantum and hidden variable theory classification of states is discussed

    Theory of Pseudomodes in Quantum Optical Processes

    Get PDF
    This paper deals with non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in high Q cavities or photonic band gap materials. In cases such as the former, we show that the pseudo mode theory for single quantum reservoir excitations can be obtained by applying the Fano diagonalisation method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two and many discrete quasimodes are made. For a simple photonic band gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes

    Decoherence Rates in Large Scale Quantum Computers and Macroscopic Systems

    Full text link
    Markovian regime decoherence effects in quantum computers are studied in terms of the fidelity for the situation where the number of qubits N becomes large. A general expression giving the decoherence time scale in terms of Markovian relaxation elements and expectation values of products of system fluctuation operators is obtained, which could also be applied to study decoherence in other macroscopic systems such as Bose condensates and superconductors. A standard circuit model quantum computer involving three-state lambda system ionic qubits is considered, with qubits localised around well-separated positions via trapping potentials. The centre of mass vibrations of the qubits act as a reservoir. Coherent one and two qubit gating processes are controlled by time dependent localised classical electromagnetic fields that address specific qubits, the two qubit gating processes being facilitated by a cavity mode ancilla, which permits state interchange between qubits. With a suitable choice of parameters, it is found that the decoherence time can be made essentially independent of N.Comment: Minor revisions. To be published in J Mod Opt. One figur

    Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    Get PDF
    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable defined by the time integral of the field amplitude, and leads to a coupling between the two modes. For simplicity the center frequency was chosen to be resonant with the inter-mode transition frequency. Measuring the mean and variance of the population difference between the two modes for the output state of the interferometer for various choices of interferometer variables is shown to enable the mean values and covariance matrix for the spin operators for the input quantum state of the two mode system to be determined. The paper concludes with a discussion of several key experimental papers on spin squeezing

    Teleportation with a uniformly accelerated partner

    Get PDF
    In this work, we give a description of the process of teleportation between Alice in an inertial frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation is reduced due to Unruh radiation in Rob's frame. In so far as teleportation is a measure of entanglement, our results suggest that quantum entanglement is degraded in non inertial frames.Comment: 7 pages with 4 figures (in revtex4
    corecore