5,605 research outputs found

    On the CCD Calibration of Zwicky galaxy magnitudes & The Properties of Nearby Field Galaxies

    Full text link
    We present CCD photometry for galaxies around 204 bright (m_Z < 15.5) Zwicky galaxies in the equatorial extension of the APM Galaxy Survey, sampling and area over 400 square degrees, which extends 6 hours in right ascension. We fit a best linear relation between the Zwicky magnitude system, m_Z, and the CCD photometry, B, by doing a likehood analysis that corrects for Malmquist bias. This fit yields a mean scale error in Zwicky of 0.38 mag per magnitude: ie Delta m_Z = (0.62 \pm 0.05) Delta B and a mean zero point of = -0.35 \pm 0.15 mag. The scatter around this fit is about 0.4 mag. Correcting the Zwicky magnitude system with the best fit model results in a 60% lower normalization and 0.35 mag brighter M_* in the luminosity function. This brings the CfA2 luminosity function closer to the other low redshift estimations (eg Stromlo-APM or LCRS). We find a significant positive angular correlation of magnitudes and position in the sky at scales smaller than about 5 armin, which corresponds to a mean separation of 120 Kpc/h. We also present colours, sizes and ellipticities for galaxies in our fields which provides a good local reference for the studies of galaxy evolution.Comment: Full size figures can be found in http://www.ieec.fcr.es/cosmo-www/zwicky.ps Version accepted for publication in MNRAS. Extended discussion on properties of nearby galaxies. References added. An inconsistency in the R band isophote used has been corrected. Main results and conclusions are unchange

    Field Quantization, Photons and Non-Hermitean Modes

    Get PDF
    Field quantization in three dimensional unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes in both the cavity and external regions. The cavity non-Hermitean modes (NHM) are treated using the paraxial and monochromaticity approximations. The NHM bi-orthogonality relationships are used in a standard canonical quantization procedure based on introducing generalised coordinates and momenta for the electromagnetic (EM) field. The quantum EM field is equivalent to a set of quantum harmonic oscillators (QHO), associated with either the cavity or the external region NHM. This confirms the validity of the photon model in unstable optical systems, though the annihilation and creation operators for each QHO are not Hermitean adjoints. The quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which is sum of independent QHO Hamiltonians for each NHM, but the external field Hamiltonian also includes a coupling term responsible for external NHM photon exchange processes. Cavity energy gain and loss processes is associated with the non-commutativity of cavity and external region operators, given in terms of surface integrals involving cavity and external region NHM functions on the cavity-external region boundary. The spontaneous decay of a two-level atom inside an unstable cavity is treated using the essential states approach and the rotating wave approximation. Atomic transitions leading to cavity NHM photon absorption have a different coupling constant to those leading to photon emission, a feature resulting from the use of NHM functions. Under certain conditions the decay rate is enhanced by the Petermann factor.Comment: 38 pages, tex, 2 figures, ps. General expression for decay rate added. To be published in Journal of Modern Optic

    The rodent research animal holding facility as a barrier to environmental contamination

    Get PDF
    The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent

    Hierarchical clustering and formation of power-law correlation in 1-dimensional self-gravitating system

    Get PDF
    The process of formation of fractal structure in one-dimensional self-gravitating system is examined numerically. It is clarified that structures created in small spatial scale grow up to larger scale through clustering of clusters, and form power-law correlation.Comment: 9pages,4figure

    Biased-estimations of the Variance and Skewness

    Full text link
    Nonlinear combinations of direct observables are often used to estimate quantities of theoretical interest. Without sufficient caution, this could lead to biased estimations. An example of great interest is the skewness S3S_3 of the galaxy distribution, defined as the ratio of the third moment \xibar_3 and the variance squared \xibar_2^2. Suppose one is given unbiased estimators for \xibar_3 and \xibar_2^2 respectively, taking a ratio of the two does not necessarily result in an unbiased estimator of S3S_3. Exactly such an estimation-bias affects most existing measurements of S3S_3. Furthermore, common estimators for \xibar_3 and \xibar_2 suffer also from this kind of estimation-bias themselves: for \xibar_2, it is equivalent to what is commonly known as the integral constraint. We present a unifying treatment allowing all these estimation-biases to be calculated analytically. They are in general negative, and decrease in significance as the survey volume increases, for a given smoothing scale. We present a re-analysis of some existing measurements of the variance and skewness and show that most of the well-known systematic discrepancies between surveys with similar selection criteria, but different sizes, can be attributed to the volume-dependent estimation-biases. This affects the inference of the galaxy-bias(es) from these surveys. Our methodology can be adapted to measurements of analogous quantities in quasar spectra and weak-lensing maps. We suggest methods to reduce the above estimation-biases, and point out other examples in LSS studies which might suffer from the same type of a nonlinear-estimation-bias.Comment: 28 pages of text, 9 ps figures, submitted to Ap

    Coherent population trapping in quantized light field

    Full text link
    A full quantum treatment of coherent population trapping (CPT) is given for a system of resonantly coupled atoms and electromagnetic field. We develop a regular analytical method of the construction of generalized dark states (GDS). It turns out that GDS do exist for all optical transitions Fg→FeF_g\to F_e, including bright transitions F→F+1F\to F+1 and F′′→F′′F''\to F'' with F′′F'' a half-integer, for which the CPT effect is absent in a classical field. We propose an idea to use an optically thick medium with a transition F′′→F′′F''\to F'' with F′′≥3/2F'' \ge 3/2 a half-integer as a ''quantum filter'', which transmits only a quantum light.Comment: revtex4, twocolumn, 6 pages, including 1 figur

    Theory of Pseudomodes in Quantum Optical Processes

    Get PDF
    This paper deals with non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in high Q cavities or photonic band gap materials. In cases such as the former, we show that the pseudo mode theory for single quantum reservoir excitations can be obtained by applying the Fano diagonalisation method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two and many discrete quasimodes are made. For a simple photonic band gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes

    Discovery of the VHE gamma-ray source HESS J1641-463

    Full text link
    A new TeV source, HESS J1641-463, has been serendipitously discovered in the Galactic plane by the High Energy Stereoscopic System (H.E.S.S.) at a significance level of 8.6 standard deviations. The observations of HESS J1641-463 were performed between 2004 and 2011 and the source has a moderate flux level of 1.7% of the Crab Nebula flux at E > 1 TeV. HESS J1641-463 has a rather hard photon index of 1.99 +- 0.13_stat +- 0.20_sys. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1, but no clear X-ray counterpart has been found in archival Chandra observations of the region. Different possible VHE production scenarios will be discussed in this contribution.Comment: 5 pages, 5 figures, 2012 Fermi Symposium proceedings - eConf C12102

    The Aquarius Superclusters - I. Identification of Clusters and Superclusters

    Get PDF
    We study the distribution of galaxies and galaxy clusters in a 10^deg x 6^deg field in the Aquarius region. In addition to 63 clusters in the literature, we have found 39 new candidate clusters using a matched-filter technique and a counts-in-cells analysis. From redshift measurements of galaxies in the direction of these cluster candidates, we present new mean redshifts for 31 previously unobserved clusters, while improved mean redshifts are presented for 35 other systems. About 45% of the projected density enhancements are due to the superposition of clusters and/or groups of galaxies along the line of sight, but we could confirm for 72% of the cases that the candidates are real physical associations similar to the ones classified as rich galaxy clusters. On the other hand, the contamination due to galaxies not belonging to any concentration or located only in small groups along the line of sight is ~ 10%. Using a percolation radius of 10 h^{-1} Mpc (spatial density contrast of about 10), we detect two superclusters of galaxies in Aquarius, at z = 0.086 and at z = 0.112, respectively with 5 and 14 clusters. The latter supercluster may represent a space overdensity of about 160 times the average cluster density as measured from the Abell et al. (1989) cluster catalog, and is possibly connected to a 40 h^{-1} Mpc filament from z ~ 0.11 to 0.14.Comment: LateX text (21 pages) and 12 (ps/eps/gif) figures; figures 5a, 5b and 6 are not included in the main LateX text; to be published in the Astronomical Journal, March issu

    Non-Markovian Decay of a Three Level Cascade Atom in a Structured Reservoir

    Get PDF
    We present a formalism that enables the study of the non-Markovian dynamics of a three-level ladder system in a single structured reservoir. The three-level system is strongly coupled to a bath of reservoir modes and two quantum excitations of the reservoir are expected. We show that the dynamics only depends on reservoir structure functions, which are products of the mode density with the coupling constant squared. This result may enable pseudomode theory to treat multiple excitations of a structured reservoir. The treatment uses Laplace transforms and an elimination of variables to obtain a formal solution. This can be evaluated numerically (with the help of a numerical inverse Laplace transform) and an example is given. We also compare this result with the case where the two transitions are coupled to two separate structured reservoirs (where the example case is also analytically solvable)
    • …
    corecore