43 research outputs found

    Soluble biomarkers to predict clinical outcomes in non-small cell lung cancer treated by immune checkpoints inhibitors

    Get PDF
    Lung cancer remains the first cause of cancer-related death despite many therapeutic innovations, including immune checkpoint inhibitors (ICI). ICI are now well used in daily practice at late metastatic stages and locally advanced stages after a chemo-radiation. ICI are also emerging in the peri-operative context. However, all patients do not benefit from ICI and even suffer from additional immune side effects. A current challenge remains to identify patients eligible for ICI and benefiting from these drugs. Currently, the prediction of ICI response is only supported by Programmed death-ligand 1 (PD-L1) tumor expression with perfectible results and limitations inherent to tumor-biopsy specimen analysis. Here, we reviewed alternative markers based on liquid biopsy and focused on the most promising biomarkers to modify clinical practice, including non-tumoral blood cell count such as absolute neutrophil counts, platelet to lymphocyte ratio, neutrophil to lymphocyte ratio, and derived neutrophil to lymphocyte ratio. We also discussed soluble-derived immune checkpoint-related products such as sPD-L1, circulating tumor cells (detection, count, and marker expression), and circulating tumor DNA-related products. Finally, we explored perspectives for liquid biopsies in the immune landscape and discussed how they could be implemented into lung cancer management with a potential biological–driven decision

    Soluble biomarkers to predict clinical outcomes in non-small cell lung cancer treated by immune checkpoints inhibitors.

    Full text link
    peer reviewedLung cancer remains the first cause of cancer-related death despite many therapeutic innovations, including immune checkpoint inhibitors (ICI). ICI are now well used in daily practice at late metastatic stages and locally advanced stages after a chemo-radiation. ICI are also emerging in the peri-operative context. However, all patients do not benefit from ICI and even suffer from additional immune side effects. A current challenge remains to identify patients eligible for ICI and benefiting from these drugs. Currently, the prediction of ICI response is only supported by Programmed death-ligand 1 (PD-L1) tumor expression with perfectible results and limitations inherent to tumor-biopsy specimen analysis. Here, we reviewed alternative markers based on liquid biopsy and focused on the most promising biomarkers to modify clinical practice, including non-tumoral blood cell count such as absolute neutrophil counts, platelet to lymphocyte ratio, neutrophil to lymphocyte ratio, and derived neutrophil to lymphocyte ratio. We also discussed soluble-derived immune checkpoint-related products such as sPD-L1, circulating tumor cells (detection, count, and marker expression), and circulating tumor DNA-related products. Finally, we explored perspectives for liquid biopsies in the immune landscape and discussed how they could be implemented into lung cancer management with a potential biological-driven decision

    Hypoxia in Lung Cancer Management: A Translational Approach

    Full text link
    SIMPLE SUMMARY: Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. ABSTRACT: Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management

    A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement.

    Get PDF
    BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.journal articleresearch support, non-u.s. gov't2016 Feb2015 10 26importe

    Epidémiologie, histoire naturelle et détection des infections à HPV

    No full text

    [Natural history of papillomavirus infections]

    No full text
    International audienceThe human papillomavirus (HPV) origin of cervical cancer has been suggested by H. zur Hausen in 1976 and then confirmed by fundamental and epidemiological studies. Indeed, the proportion of invasive cervical cancers found to contain high risk HPV DNA reached more than 95%, the HPV negative women being not risky. The progression of dysplastic lesions is closely linked to the persistence of viral infection. The determinants affecting persistence of HPV infection can be divided into viral factors (types and variants, viral load, viral DNA integration and viral E6/E7 mRNA expression), host-related factors (immune response, genetic susceptibility) and environmental factors (oral contraceptive, smoking, diet)

    Plasticité phénotypique et thérapies ciblées dans les cancers bronchiques non à petites cellules

    No full text
    International audienceLung cancer is the most diagnosed and deathly type of cancer worldwide. It has a poor prognosis because of a late diagnosis, high metastatic potential and resistance to conventional therapies. Since the 2000s, the emergence of targeted therapies has improved patients' outcomes. However, these therapies concern only a small proportion of patients, selected by the presence of molecular biomarkers that indicate the targeting relevance. Here, we discuss the possibility that new phenotypical biomarkers could be predictive factors for targeted therapies in lung cancer.Le cancer bronchique représente la première cause de décès par cancer dans le monde. Il est de mauvais pronostic avec un diagnostic tardif, un fort potentiel métastatique et une résistance aux thérapies conventionnelles. Depuis les années 2000, l'apparition des thérapies ciblées a permis d'améliorer le pronostic des patients. Cependant, ces thérapies ne s'adressent qu'à une faible proportion de patients, sélectionnés par la présence d'un biomarqueur moléculaire qui indiquera que le ciblage est pertinent. Ici, nous discutons de la possibilité d'utiliser de nouveaux biomarqueurs phénotypiques comme facteurs prédictifs de réponse aux thérapies ciblées dans les cancers bronchiques non à petites cellules

    Analytical evaluation of the PapilloCheck test, a new commercial DNA chip for detection and genotyping of human papillomavirus.

    No full text
    International audienceRecently, a commercially available HPV DNA chip, the PapilloCheck test, developed by Greiner Bio-One, has become available for human papillomavirus (HPV) genotyping. The PapilloCheck test is a PCR-based test using a new consensus primer set targeting the E1 HPV gene. HPV oligoprobes immobilized on a DNA chip allow for the identification of 24 HPV types from the amplified product. In the present study, the analytical performance of the PapilloCheck test is compared to the Linear Array HPV genotyping test (Roche Diagnostics). Cervical specimens collected in PreservCyt (Cytyc) solution and obtained from women who presented abnormal cytological findings were tested primarily by the Hybrid Capture 2 High-Risk assay (HC2-HR, QIAGEN). A total of 144 samples were selected according to the signal intensity obtained with the HC2-HR test, expressed as RLU/CO value, and divided into 4 groups as follows: [0-1] RLU/CO (negative HC2-HR result, 34 samples); [1-5] RLU/CO (positive HC2-HR result, 30 samples); [5-40] RLU/CO (positive HC2-HR result, 40 samples); >40 RLU/CO (positive HC2-HR result, 40 samples). The concordance levels between the HC2-HR test and each of the genotyping assays was similar (88.8%) and the crude agreement between these assays was considered as "good". The detailed analysis of the discrepant results confirmed a possibly high rate of false positive results of HC2-HR test in the 1-5 RLU/CO grey zone. Genotype-specific comparison analysis was limited to the 23 HPV types detected by both genotyping assays (HPV types 6, 11, 16, 18, 31, 33, 35, 39, 40, 42, 45, 51, 52, 53, 55, 56, 58, 59, 66, 68, 70, 73 and 82). Of the 135 samples available for comparison, 91 (67.4%) showed absolute agreement between the assays (concordant genotype-specific results), 34 (25.1%) showed correspondence for some but not all genotypes detected by both assays (compatible genotype-specific results), and the remaining 10 (7.4%) samples did not show any similarity between the tests (discordant results). The majority of discordances were found in samples containing multiple HPV types and in samples harboring low amounts of HPV. For some HPV genotypes, there were slight differences in the detection rate between the two genotyping methods. The Linear Array test seemed to be more sensitive to detect HPV type 53 whereas PapilloCheck test seemed to be more sensitive to detect HPV type 56. For the other genotypes, including HPV types 16 and 18, the results obtained by the two methods did not differ significantly. In conclusion, this study shows that the PapilloCheck test and the Linear Array test give comparable results for detecting HPV in cervical specimens. However, these results also suggest that there is a need to standardize the type-specific sensitivity of genotyping methods and to evaluate their accuracy to detect multiple HPV infections. This would be a prerequisite for the use of genotyping assays in cervical cancer screening algorithms

    High risk HPV load estimated by Hybrid Capture II® correlates with HPV16 load measured by real-time PCR in cervical smears of HPV16-infected women

    No full text
    International audienceHigh risk human papillomavirus (HR-HPV) load determined by quantitative methods has already been considered as highly predictive of future development of high grade cervical lesions. Some studies also demonstrated that Hybrid Capture II (HCII) results can be considered as a reflection of HPV DNA load, while others did not. HCI assay, well suited for routine HR-HPV screening, is not especially dedicated for quantitative use. However, we have recently shown that women with high viral loads assessed by HCII were at increased risk of cervical precancer
    corecore