75 research outputs found

    Non-topological parafermions in a one-dimensional fermionic model with even multiplet pairing

    Full text link
    We discuss a one-dimensional fermionic model with a generalized ZN\mathbb{Z}_{N} even multiplet pairing extending Kitaev Z2\mathbb{Z}_{2} chain. The system shares many features with models believed to host localized edge parafermions, the most prominent being a similar bosonized Hamiltonian and a ZN\mathbb{Z}_{N} symmetry enforcing an NN-fold degenerate ground state robust to certain disorder. Interestingly, we show that the system supports a pair of parafermions but they are non-local instead of being boundary operators. As a result, the degeneracy of the ground state is only partly topological and coexists with spontaneous symmetry breaking by a (two-particle) pairing field. Each symmetry-breaking sector is shown to possess a pair of Majorana edge modes encoding the topological twofold degeneracy. Surrounded by two band insulators, the model exhibits for N=4N=4 the dual of an 8π8 \pi fractional Josephson effect highlighting the presence of parafermions.Comment: 12 pages, 3 figure

    Many-body localization dynamics from gauge invariance

    Get PDF
    We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, Gauss law effectively induces a dynamics which can be described as a disorder average over gauge super-selection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow entanglement growth are present in a broad regime of parameters - in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ions experiments realizing dynamical gauge fields, and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.Comment: 5Pages + appendices; V2: updated discussion in page 2, more numerical results, added reference

    Floquet time crystal in the Lipkin-Meshkov-Glick model

    Full text link
    In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust under perturbations of the kicking protocol, its existence being intimately linked to the underlying Z2\mathbb{Z}_2 symmetry breaking of the time-independent model. We show that the model being infinite-range and having an extensive amount of symmetry breaking eigenstates is essential for having the time-crystal behaviour. In particular we discuss the properties of the Floquet spectrum, and show the existence of doublets of Floquet states which are respectively even and odd superposition of symmetry broken states and have quasi-energies differing of half the driving frequencies, a key essence of Floquet time crystals. Remarkably, the stability of the time-crystal phase can be directly analysed in the limit of infinite size, discussing the properties of the corresponding classical phase space. Through a detailed analysis of the robustness of the time crystal to various perturbations we are able to map the corresponding phase diagram. We finally discuss the possibility of an experimental implementation by means of trapped ions.Comment: 14 pages, 12 figure

    Finite-density phase diagram of a (1+1)-d non-abelian lattice gauge theory with tensor networks

    Full text link
    We investigate the finite-density phase diagram of a non-abelian SU(2) lattice gauge theory in (1+1)-dimensions using tensor network methods. We numerically characterise the phase diagram as a function of the matter filling and of the matter-field coupling, identifying different phases, some of them appearing only at finite densities. For weak matter-field coupling we find a meson BCS liquid phase, which is confirmed by second-order analytical perturbation theory. At unit filling and for strong coupling, the system undergoes a phase transition to a charge density wave of single-site (spin-0) mesons via spontaneous chiral symmetry breaking. At finite densities, the chiral symmetry is restored almost everywhere, and the meson BCS liquid becomes a simple liquid at strong couplings, with the exception of filling two-thirds, where a charge density wave of mesons spreading over neighbouring sites appears. Finally, we identify two tri-critical points between the chiral and the two liquid phases which are compatible with a SU(2)2SU(2)_2 Wess-Zumino-Novikov-Witten model. Here we do not perform the continuum limit but we explicitly address the global U(1)U(1) charge conservation symmetry.Comment: 13 pages, 8 figure

    Phase Diagram and Conformal String Excitations of Square Ice using Gauge Invariant Matrix Product States

    Full text link
    We investigate the ground state phase diagram of square ice -- a U(1) lattice gauge theory in two spatial dimensions -- using gauge invariant tensor network techniques. By correlation function, Wilson loop, and entanglement diagnostics, we characterize its phases and the transitions between them, finding good agreement with previous studies. We study the entanglement properties of string excitations on top of the ground state, and provide direct evidence of the fact that the latter are described by a conformal field theory. Our results pave the way to the application of tensor network methods to confining, two-dimensional lattice gauge theories, to investigate their phase diagrams and low-lying excitations.Comment: 36 pages, 16 figures; referee suggestions incorporated, added Figs. 3, 13 and appendices A,
    corecore