675 research outputs found

    The T allele of the hepatic lipase promoter variant C-480T is associated with increased fasting lipids and HDL and increased preprandial and postprandial LpCIII:B : European Atherosclerosis Research Study (EARS) II

    Get PDF
    The common C-480T transition in the hepatic lipase (HL) promoter has been shown to be associated with lower HL activity and increased high density lipoprotein (HDL) cholesterol. We examined the frequency and lipid associations of this HL polymorphism in 385 healthy, young (18- to 28-year-old) men whose fathers had had a premature myocardial infarction (designated cases) and 405 age-matched controls. These individuals were participants in the European Atherosclerosis Research Study II postprandial trial, who had been recruited from 11 European countries in 4 regions (the Baltic; United Kingdom; and central and southern Europe). Overall, the frequency of the T allele was 0.207 in controls and 0.244 in cases (P=0.08). The T allele was associated with higher fasting plasma total cholesterol (P<0.01), triglycerides (P<0.01), and HDL cholesterol (P<0.01). The strongest association was found with apolipoprotein (apo) A-I concentration, which was 10% higher in individuals homozygous for the T allele compared with those homozygous for the C allele (P<0.001). This polymorphism had no effect on the rise in plasma triglyceride levels after a fatty meal. However, before and after the fat load was ingested, levels of particles containing both apoC-III and apoB (LpC-III:B) were higher in carriers of the T allele, with homozygotes having 23% and 27% higher levels preprandially and postprandially, respectively, than those homozygous for the C allele (P<0.05). Thus, our results demonstrate that the C-480T polymorphism in the HL promoter is associated with alterations in plasma lipids and lipoproteins and the accumulation of atherogenic LpC-III:B particles

    A common variant of endothelial nitric oxide synthase (Glu298Asp) is associated with collateral development in patients with chronic coronary occlusions

    Get PDF
    BACKGROUND: Experimental studies support an important role for endothelial nitric oxide synthase (eNOS) in the regulation of angiogenesis. In humans, a common polymorphism exists in the eNOS gene that results in the conversion of glutamate to aspartate for codon 298. In vitro and in vivo studies have suggested a decreased NOS activity in patients with the Asp(298 )variant. We hypothesized that a genetic-mediated decreased eNOS activity may limit collateral development in patients with chronic coronary occlusions. METHODS: We selected 291 consecutive patients who underwent coronary angiography and who had at least one chronic (>15 days) total coronary occlusion. Collateral development was graded angiographically using two different methods: the collateral flow grade and the recipient filling grade. Genomic DNA was extracted from white blood cells and genotyping was performed using previously published techniques. RESULTS: Collateral development was lower in patients carrying the Asp(298 )variant than in Glu-Glu homozygotes (collateral flow grade: 2.64 ± 0.08 and 2.89 ± 0.08, respectively, p = 0.04; recipient filling grade: 3.00 ± 0.08 and 3.24 ± 0.07, respectively, p = 0.04). By multivariable analysis, three variables were independently associated with the collateral flow grade: female gender, smoking, and the Asp(298 )variant (p = 0.03) while the Asp(298 )variant was the sole variable independently associated with the recipient filling grade (p = 0.03). CONCLUSION: Collateral development is lower in patients with the Asp(298 )variant. This may be explained by the decreased NOS activity in patients with the Asp(298 )variant. Further studies will have to determine whether increasing eNOS activity in humans is associated with coronary collateral development

    Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor

    Get PDF
    In view of the evidence linking plasma high density lipoprotein (HDL)-cholesterol levels to a protective effect against coronary artery disease and the widespread use of fibrates in the treatment of hyperlipidemia, the goal of this study was to analyze the influence of fibrates on the expression of apolipoprotein (apo) A-II, a major protein constituent of HDL. Administration of fenofibrate (300 mg/d) to 16 patients with coronary artery disease resulted in a marked increase in plasma apo A-II concentrations (0.34 +/- 0.11 to 0.45 +/- 0.17 grams/liter; P < 0.01). This increase in plasma apo A-II was due to a direct effect on hepatic apo A-II production, since fenofibric acid induced apo A-II mRNA levels to 450 and 250% of control levels in primary cultures of human hepatocytes and in human hepatoblastoma HepG2 cells respectively. The induction in apo A-II mRNA levels was followed by an increase in apo A-II secretion in both cell culture systems. Transient transfection experiments of a reporter construct driven by the human apo A-II gene promoter indicated that fenofibrate induced apo A-II gene expression at the transcriptional level. Furthermore, several other peroxisome proliferators, such as the fibrate, Wy-14643, and the fatty acid, eicosatetraynoic acid (ETYA), also induced apo A-II gene transcription. Unilateral deletions and site-directed mutagenesis identified a sequence element located in the J-site of the apo A-II promoter mediating the responsiveness to fibrates and fatty acids. This element contains two imperfect half sites spaced by 1 oligonucleotide similar to a peroxisome proliferator responsive element (PPRE). Cotransfection assays showed that the peroxisome proliferator activated receptor (PPAR) transactivates the apo A-II promoter through this AII-PPRE. Gel retardation assays demonstrated that PPAR binds to the AII-PPRE with an affinity comparable to its binding affinity to the acyl coA oxidase (ACO)-PPRE. In conclusion, in humans fibrates increase plasma apo A-II concentrations by inducing hepatic apo A-II production. Apo A-II expression is regulated at the transcriptional level by fibrates and fatty acids via the interaction of PPAR with the AII-PPRE, thereby demonstrating the pivotal role of PPAR in controlling human lipoprotein metabolism

    Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates.

    Get PDF
    Epidemiological and transgenic animal studies have implicated apo C-III as a major determinant of plasma triglyceride metabolism. Since fibrates are very efficient in lowering triglycerides, it was investigated whether fibrates regulate apo C-III gene expression. Different fibrates lowered rat liver apo C-III mRNA levels up to 90% in a dose- and time-dependent manner, whereas intestinal apo C-III mRNA remained constant. This decrease in liver apo C-III mRNA was rapid (1 d) and reversible, since it was restored to control levels within 1 wk after cessation of treatment. In addition, fenofibrate treatment abolished the developmental rise of hepatic apo C-III mRNA observed during the suckling-weaning period. Administration of fibrates to rats induced liver and intestinal expression of the acyl CoA oxidase gene, the rate-limiting enzyme for peroxisomal beta-oxidation of fatty acids. In primary cultures of rat and human hepatocytes, fenofibric acid lowered apo C-III mRNA in a time- and dose-dependent manner. This reduction in apo C-III mRNA levels was accompanied by a decreased secretion of apo C-III in the culture medium of human hepatocytes. In rat hepatocytes fenofibric acid induced acyl CoA oxidase gene expression, whereas acyl CoA oxidase mRNA remained unchanged in human hepatocytes. Nuclear run-on and transient transfection experiments of a reporter construct driven by the human apo C-III gene promoter indicated that fibrates downregulate apo C-III gene expression at the transcriptional level. In conclusion, these studies demonstrate that fibrates decrease rat and human liver apo C-III gene expression. In humans the mechanisms appears to be independent of the induction of peroxisomal enzymes. This downregulation of liver apo C-III gene expression by fibrates may contribute to the hypotriglyceridemic action of these drugs
    • …
    corecore