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Abstract

To assess whether there is a differential hypocholesterolemic response to weight loss for subjects carrying polymorphisms of the
apolipoprotein B and other genes. A before and after comparison of lipid parameters following a calorie controlled diet for an
intervention period of 12 weeks. A lipid clinic based in a large teaching hospital. The difference in slope coefficients relating the
percentage change in lipid parameters to the change in body weight (adjusted for age, gender and initial body mass index (BMI)),
for genotype subgroups defined by polymorphisms of the 5%VNTR apoB gene, two mutations of the LPL gene and ApoE. One
hundred and forty six subjects completed the intervention diet. While, on average, the intervention was successful (mean weight
loss 3.9%), there was no statistically significant difference in the slope coefficients relating lipid change to weight loss for most of
the genotypes tested. The slope difference for long versus short 5%VNTR alleles of the apoB gene was 0.445 (−1.307, 2.198) for
apolipoprotein B and −0.104 (−1.486, 1.278) for total cholesterol. However, subjects carrying at least one o4 allele were
significantly hypo-responsive to weight loss, difference in slope coefficients −1.087 (−2.09, −0.084) and −1.320 (−2.589,
0.051) for total cholesterol and apoB, respectively. Although, this study is one of the largest of its kind, it has not replicated the
findings of other smaller studies. These findings do not provide support for the use of genotype-targeted dietary advice in routine
practice. © 2000 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The contribution of elevated serum cholesterol,
smoking and raised blood pressure to the underlying
population risk of coronary heart disease (CHD) is now
beyond question. What is equally clear, however, is the
fact that although these risk factors predict well in
groups, they have only modest predictive power at an
individual level. Lately, therefore, interest has been

refocused in the role of genetic factors. Such was the
impetus behind Etude Cas-Temoin sur l’Infarctus du
Myocarde (ECTIM). This study capitalised on the fact
that registration of CHD events under the auspices of
the WHO MONICA project, had confirmed a three-
fold difference in myocardial infarction incidence and
mortality between France and Northern Ireland and
provided an ideal population sampling frame to study
genetic associations with coronary risk.

Within this study, a variety of apoB polymorphisms
has been linked to myocardial infarction risk. An in-
triguing finding was the association of risk with vari-
able-number tandem repeat polymorphisms of the
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apolipoprotein B gene [1]. Subjects carrying the 48-re-
peat allele were at increased risk of MI but only if they
had a high body mass index (BMI). Similar findings
have emerged in other studies for different lipid traits.
For example, recent results from the European
Atherosclerosis Research Study II show a broad paral-
lel with respect to the ASN9 mutation of the lipo-
protein lipase gene [2]. In that study, cases were the
‘healthy’ sons of men with premature coronary artery
disease. Compared to age-matched controls they were
more likely to bear at least one of the rare mutations of
the LPL gene and were more likely to have elevated
triglycerides, but most markedly so if they were over-
weight [2].

Some have begun to question whether the benefits of
dietary manipulation [3,4] and weight loss apply to
everyone [5]. Indeed, a change in diet, energy intake or
output will have varying effects depending on a variety
of largely unknown ‘constitutional’ factors.

The effects of weight loss on a variety of lipid
parameters has been quantified in a recent meta-analy-
sis of 70 studies [6]. The results suggest that for every
kg decrease in body weight there is a predicted decrease
of 0.05 mmol/l in triglycerides and a 0.02 mmol/l
decrease in low density lipoprotein (LDL). In other
large studies, such as the multiple risk factor interven-
tion trial (MRFIT), the effects of weight loss and
changes in dietary fat composition were additive, with a
3.8-fold greater decrease in plasma cholesterol in the
tertile of men with the greatest decrease in Keys score
and greatest weight loss compared to men in the tertile
of least decrease in Keys score and gain in weight [7].

Unfortunately most previous studies on the determi-
nants of hyper- and hypo-responsiveness have treated
weight loss as a confounder rather than as an indepen-
dent variable in its own right. Given our previous
findings from the ECTIM [1] and EARS [2] studies and
a body of literature which has focused mainly on the
interaction between diet constitution and the genetic
predictors of the hypocholesterolemic response, we
have studied the influence of specific genetic polymor-
phisms on the hypolipidemic response to weight loss.
Our specific null hypotheses related to polymorphisms
of the apolipoprotein B gene (ApoB/VNTR), the LPL
gene (LPLSer447-Ter and LPLASP291-Ser mutations)
and apo E.

2. Methods

Our intention was to recruit patients from primary
and secondary care who had been referred to our team
for the management of their lipid disorder. In accor-
dance with our Ethical committee’s approval, our sub-
jects were enrolled on the basis of a pragmatic trial of
dietary intervention before considering pharmacological

intervention. Thus following initial screening, subjects
received advice on only one intervention diet (i.e. there
was no switchback diet), after 12 weeks of which,
response was assessed.

Ethical approval for the study was granted by the
Queen’s University of Belfast Research Ethics
Committee.

2.1. Recruitment criteria and nutritional assessment
procedures

Subjects not already on lipid lowering medication,
with a plasma total cholesterol above 7 mmol/l or a
triglyceride greater than 2.5 mmol/l and a BMI in
excess of 27 kg/m2 were eligible for inclusion. They
were recruited mainly from the lipid clinic at the Royal
Victoria Hospital, Belfast and from referrals of healthy
subjects who had previously served as controls in other
recent MONICA project-based studies (catchment pop-
ulation 500 000). Subjects with a personal or family
history of tendon xanthomata or other stigmata of
familial hypercholesterolaemia were excluded.

An initial fasting blood sample was taken at the lipid
clinic but subjects were then called back 1 week later
when a second sample was obtained. Only if both
samples fulfilled the recruitment criteria were subjects
finally enrolled in the study. Subsequently, the average
of these first two measurements of lipid parameters was
taken as the baseline value.

Each subject completed an interview administered
socio-demographic, lifestyle and medical history ques-
tionnaire. All subjects were then seen by the nutritionist
for an assessment of habitual diet and an individual
dietary ‘prescription’ for the intervention period.

The dietary intervention involved lipid lowering
weight and reduction advice and a 12 week follow-up
period with two further dietary assessments. At the first
clinic visit participants were asked to record their habit-
ual diet using a 4 day estimated food diary. Where
portion sizes were unknown they were estimated using
UK Ministry of Agriculture, Fisheries and Foods
(MAFF) tables [8]. The diaries were then coded and
analysed for nutrient intake using the FOODBASE
nutrient database [9]. Total daily energy expenditure
was calculated as the sum of basal metabolic rate, the
thermic effect of food eaten and the energy expended in
physical activity [10–12]. The calorific value of the
intervention diet was calculated at 500–1000 kcal below
these requirements. Dietary guidelines were based on
those of the European Atherosclerosis Society [13], less
than 30% energy from total fat (including alcohol); less
than 10% energy from saturates; 10% energy from
polyunsaturates and 10–15% from monounsaturates;
less than 300 mg/day from dietary cholesterol.

Participants were visited in their homes by the dieti-
cian three to four times over the intervention period.
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Subjects were weighed on these home visits and given
instruction to complete two further food diaries during
weeks 4 and 12. Practical advice and behavioural ther-
apy information was given to subjects where appropri-
ate, to increase compliance e.g. advice on regular meal
patterns, food shopping, cooking and eating out.

At a final clinic visit the last food diary was checked
prior to analysis and BMI recorded.

2.2. Lipid, lipoprotein and apolipoprotein measurements

A blood sample of 20 ml was obtained after the
subjects had fasted for at least 10 h, and placed in tubes
containing Na2EDTA, kept at room temperature and
centrifuged within 4 h. After addition of preservative
(final concentrations, EDTA, 0.27 mmol/l; o-amino-n-
caproic acid, 0.9 mmol/l; chloramphenicol, 0.6 mmol/l;
and glutathione, 0.3 mmol/l) [14], the plasma was
stored at 4°C for no longer than 6 days and sent at 4°C
to the laboratory in Lille where lipoprotein measure-
ments were performed immediately.

Initial plasma total cholesterol and triglycerides were
measured in the Department of Clinical Biochemistry,
Royal Victoria Hospital, by enzymatic methods
(Boehringer Mannheim, Mannheim, Germany) adapted
to a Hitachi 705 analyser. The Institut Pasteur in Lille
subsequently measured cholesterol in the very low den-
sity lipoprotein (VLDL) fraction separated by ultracen-
trifugation [15] and in the high density lipoprotein
(HDL) — containing supernatant after sodium phos-
photungstate/magnesium chloride precipitation
(Boehringer Mannheim). Low density lipoprotein
(LDL) cholesterol was estimated by subtraction.
Apolipoproteins (apos) A-I and B were quantified by
immunonephelometry (Behringwerke, Marburg, Ger-
many). The inter-assay coefficients of variation for
cholesterol, triglyceride, high density cholesterol and
apoB, the primary endpoints of interest in this study,
were 1.34, 1.78, 4.43 and 3.95%, respectively. Lipid
results were unavailable from Lille for 17 samples
(3.9%) in 14 individuals. We substituted values derived
from assays performed locally in Belfast after adjust-
ment for inter-laboratory bias. As samples had been
independently assayed in Belfast throughout the study,
this bias was investigated by paired t-tests and Bland–
Altman plots on the remaining data-set. The correction
was an additive factor for cholesterol, LDL and HDL
and a multiplicative factor for triglyceride. The ad-
justed values for these 17 samples were then used in the
final analysis.

2.3. Extraction of genomic DNA and genotyping

Genomic DNA was extracted from white blood cells
using the ‘salting out’ procedure described by Miller et
al. [16]. The polymerase chain reaction (PCR) was used
to amplify the regions encompassing the ApoB/VNTR,
ApoE, LPLSer447-Ter mutation and LPLASP291-Ser
mutations. A description of these polymorphisms and
amplimers is provided in the table below.

All biallelic polymorphisms were analysed by hy-
bridisation of the corresponding amplification products
with allele specific oligonucleotides (ASO). The se-
quences of ASO probes are provided below. The ASO
(10 pmol) probes were phosphorylated at their 5% ends
with g32P dATP (3000 Ci/mmol) and T4 polynucleotide
kinase (GIBCO BRL, UK). Membranes were prehy-
bridised for 3 h in a hybridisation buffer containing
PEG 7% and SOS 10%. For each polymorphism, hy-
bridisation with the ASO probe corresponding to the
less frequent allele was performed for 3 h and autora-
diograms were prepared by exposing films (Dupont) to
membranes at −20°C for 4–12 h. Membranes were
then dehybridised, and rehybridised using the same
procedures with the ASO probe corresponding to the
most frequent allele and autoradiograms prepared
Table 1.

Table 1
Primers and ASO probesa

Primers used for amplification Allele specific oligonucleotides

ApoB/VNTR
(u)

GGACAGTGAAACGAGGGC

(l)
GGCACATGAAGACACCAGA
GG

1.5 mM MgCl2 at 59°C

Apo E Codon 112
(u) TCCAAGGAGCTGCAGG 1. 5% GGACGTGTGCGG

CGGCGCA CCG3%
2. 5% GGACGTGCGCGG(l) TAGCGCCTGGCCGGCCA

GGGAG CCG 3%
1.5 mM MgCl2 at 65°C

Codon 158
1. 5% GCAGAAGCGCCT
GGC 3%
2. 5% GCAGAAGTGCCT
GGC 3%

LPL 447
(u) TGTTCTACATGGCATATT 1. 5% TAAGAAGTCAGGCT

GGT 3%CAC
(l) TCAGGATGCCCAGTCA 2. 5% TAAGAAGTGAGGCT

GGT 3%GCTT
1.5 mM MgCl2 at 55°C

LPL 291
(u) TTATTTACAACAGTCTC 2. 5% TGACTTTACTGATC

CAG TCA 3%
1. 5% TGAGATCAATAAAG(l) ATCTTGGTGTCTCTTTT

TTACC TCA 3%
3.5 mM MgCl2 at 55°C

a 1, More frequent allele; 2 less frequent allele.
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Table 2
Baseline lipid and lipoprotein variables and absolute change after intervention

S.D. Missing Absolute change (S.D.) after dietary interventionMean Missing

1.12 1 −0.46 (0.95)Total cholesterol (mm/l) 27.58
0.28 11.12 −0.03 (0.17)High density cholesterol (mm/l) 2
0.99 1Low density cholesterol (mm/l) −0.29 (0.82)5.00 2
2.50 13.43 −0.44 (1.77)Triglyceride (mm/l) 2

1.90Apo B (g/l) 0.40 5 −0.12 (0.30) 13

Table 3
Bivariate correlation of weight change after intervention with change in dietary constituents and lipids

Dietary variables (D)

Total calories Protein Carbohydrate Total fat Saturated fat PUFA MUFA

3a
0.056 0.114 0.0920.128 0.11Pearson correlation 0.075 0.108

0.137P 0.517 0.185 0.282 0.202 0.384 0.210

Lipid variables (D)

HDL LDL TriglycerideTotal cholesterol ApoB

3b
−0.008 0.038 0.3150.155 0.239Pearson correlation

P 0.064 0.92 0.649 B0.001 0.006

2.4. Statistical methods

The key outcome variables of interest were the
changes in lipid parameters (primarily, total cholesterol,
HDL cholesterol, LDL cholesterol, triglycerides, and
apolipoprotein B) after the 12 week intervention diet.
The key independent variable was the change in body
weight, with genotype, age, initial BMI and gender as
the principal co-variates. Our analytic strategy was to
adjust for specific dietary component changes only if
significant overall effects of genetic constitution on the
relationship between weight loss and lipid change were
observed.

Multiple regression was used to compare the slopes
of the relationships between change in lipid (%) and
change in weight (%) in subgroups defined by geno-
types. In each case, checks were first undertaken for
Hardy–Weinberg equilibrium. Among all the geno-
types tested, the only significant departure from equi-
librium proportions was for ApoE(o2), where there was
a significant over-representation of the o22 allele. This
is not entirely surprising given our recruitment criteria
(specifying a mixed hyperlipidaemia pattern) and is due
to the over-representation in this referral sample of
subjects with Type III hyperlipidaemia. [The number of
subjects in each apoo genotype class were, o22 (4); o23
(13); o33 (68); o34 (51); o24 (2); o44 (4)].

Because of relatively small numbers it was decided to
undertake a two-level genotype comparison, combining

homozgyotes with heterozygotes for the rarer allele into
one group. Results are expressed as the difference in
slope coefficients between the genotypic subgroups.

3. Results

Although our target had been to recruit 200 subjects,
the rate of recruitment fell substantially and dramati-
cally after the publication of the 4S [17] and WO-
SCOPS [18] findings. One hundred and forty six
subjects were recruited in total (70 men and 76 women).
The mean age of the group was 51.2 years (S.D. 9.82)
[46.8 (S.D. 9.4) for men and 55.2 (S.D. 8.4) for women]
and the mean BMI 30.9 (S.D. 3.16). The group, as a
whole, was relatively ‘healthy’, only two (1.4%) having
previously had a diagnosis of myocardial infarction,
though 66 (45.2%) had a previous diagnosis of hyper-
tension. The average weight loss was 3.15 kg overall
[with a range from −4.8 kg (i.e. a gain) to 14.9 kg],
although 13 subjects gained weight. Table 2 gives their
initial lipid parameters, (the mean of the first two
measurements prior to the intervention diet).

The change achieved in the intake of particular con-
stituents of the diet varied. Total calorie intake, for
example, fell by 16% and total fat by 29%, with a
corresponding decrease in carbohydrate of 9%.

The change achieved in body weight was initially
correlated with the change in the dietary and lipid and
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lipoprotein variables. Table 3 gives these initial bivari-
ate correlations. There were significant correlations be-
tween the degree of weight change and ApoB and
triglyceride levels after intervention. There was no sig-
nificant correlation between the degree of weight loss
and the percentage change in the various dietary
constituents.

Table 4 gives the mean change in lipid parameters
across genotype classes. From this table there is the
suggestion that after the intervention, cholesterol, LDL,
ApoB and triglyceride levels have changed more among
subjects with at least one apoo2 allele and less among
those with at least one o4 allele.

3.1. The influence of genotype on the relationship
between weight change and lipid change

While Table 3b indicates the overall association be-
tween weight change and lipid change, the key test is a
comparison of the slope coefficients for each genotype
concerned {(+ + and +/− ) vs. (− − ) for the rare

and common alleles}. Tables 5–7 summarise these re-
sults. Figs. 1 and 2 more clearly illustrate the approach
taken. In this regression analysis, BMI is the main
independent variable contrary to the approach of many
previous studies. For most of the major traits consid-
ered (total cholesterol, HDL, LDL, apolipoprotein B
and triglyceride), there was no statistically significant
difference in the slope of the relationship between
weight reduction and lipid change for any of the geno-
types studied. The sole exceptions to this were for
apoo4. In this instance, there was a significantly reduced
responsiveness to weight loss demonstrated for both
total cholesterol and apolipoprotein B among subjects
with at least one o4 allele. The final column of Tables
4–6 gives the difference in slopes and its 95% confi-
dence intervals. From this one might judge whether the
results could exclude a minimum clinically important
difference in the lipid reduction after weight loss (of a
given degree) between subjects of one or other geno-
type.

Table 5
Slope coefficients relating weight change to lipid response for apoB

Slope difference and 95% CITest of difference in slopes PSlope coefficientGenotypeLipid trait

Unadjusted− −++ and +/− Adjusted a

Nmax=36 Nmax=107HVR48+

Total cholesterol 0.372 0.476 0.88 0.71 −0.104 (−1.486, 1.278)
0.252 −0.098HDL 0.71 0.75 0.350 (−1.514, 2.215)

LDL 0.076 (−2.076, 2.228)0.940.940.2270.303
0.620.620.816 0.445 (−1.307, 2.198)1.261Apo B

2.710 2.623 0.97Trig 0.94 0.087 (−4.319, 4.493)

a P adjusted for age, gender and initial BMI.

Table 6
Slope coefficients relating weight change to lipid response for ApoE genotypes

Genotype Slope coefficientLipid trait Test of difference in slopes P Slope difference and 95% CI

AdjustedaUnadjusted− −++ and +/−

Apo o2 Nmax=19 Nmax=123

Total cholesterol 1.337 0.328 0.22 0.22 1.009 (−0.627, 2.645)
0.401 −0.039HDL 0.71 0.74 0.441 (−1.905, 2.786)

LDL 0.673 0.164 0.71 0.71 0.508 (−2.214, 3.231)
ApoB 1.404 0.644 0.52 0.49 0.760 (−1.574, 3.094)

4.263 2.297Trig 0.47 0.49 1.965 (−3.412, 7.343)

Nmax=57Apo o4 Nmax=85

−0.004 1.084 0.03 0.04 −1.087 (−2.09, −0.084)Total cholesterol
−0.473 0.507HDL 0.16 0.13 −0.978 (−2.353, 0.393)

−0.743 (−2.357, 0.871)0.320.360.709−0.034LDL
0.227 1.547ApoB 0.04 0.06 −1.320 (−2.589, −0.051)

3.8001.706Trig −2.094 (−5.303, 1.115)0.220.20

a Adjusted for age, gender and initial BMI.
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Table 7
Slope coefficients relating weight change to lipid response for LPL genotypes

Slope coefficientLipid trait Test of difference in slopes PGenotype Slope difference and 95% CI

++ and +/− − − Unadjusted Adjusteda

Nmax=17LPL447 Nmax=126

1.867 0.311Total cholesterol 0.10 0.11 1.556 (−0.322, 3.434)
HDL 0.727 −0.083 0.52 0.58 0.810 (−1.669, 3.289)
Trig 2.551 2.680 0.97 0.86 −0.130 (−6.047, 5.787)

Nmax=5 Nmax=133LPL 291

Total cholesterol −0.2665 0.402 0.63 0.73 −0.667 (−3.366, 2.032)
1.713 −0.123 0.29 0.37 1.835 (−1.591, 5.262)HDL

−0.661 2.550Trig 0.47 0.53 −3.211 (−11.918, 5.496)

a Adjusted for age, gender and initial BMI.

For example, although subjective, one might consider
a difference in slopes of 2.5% as the minimum clinically
important for total cholesterol as this would translate
into a risk difference (assuming it was sustained) of
around 5%. An effect of this size is compatible with
that demonstrated for the relationship between apoo4
and apolipoprotein B.

4. Discussion

In terms of the magnitude of the change in lipid
traits, such as total cholesterol, consequent upon a
reduction in weight of 1 kg, the overall results of this
study are broadly consistent with the findings of a
recent meta-analysis [6]. In the MRFIT study, [7] corre-
lations relating change in weight to change in lipids
were substantially greater than those relating the
change in lipids to the change in the dietary (keys)
score, prompting some to conclude that it may be more
important for hyperlipidaemics to lose weight than to
change the fat composition of their diet [19].

Among our primary objectives had been to determine
whether there was any differential effect of weight loss
on lipid change in subgroups defined by particular
alleles or genotypes (in particular by VNTR polymor-
phisms of the apoB gene, two mutations of the LPL
gene and apoE). For most of the genotypes studies this
has not been demonstrated and there are at least four
possible interpretations.

The genotypes studied may exert no true effect on the
variability of lipid response to weight loss. Most other
studies in this area have reported their findings in terms
of how genetic factors modify the hypocholesterolemic
response to dietary change and the observed magnitude
of this effect has varied. In one study for example, allele
frequencies (of polymorphisms of the apoB gene) were
shown to differ significantly between ‘responders’ and

‘non-responders’ on the basis of a 3% difference in
cholesterol after dietary intervention [20]. Other studies
have assessed the proportion of variance in lipid re-
sponse that can be explained by constitutional factors.

A significant difficulty in interpreting the findings of
these studies is the inability to distinguish hypothesis
confirming from hypothesis generating findings that
have emerged from post hoc data dredging. In some
studies, the finding of a variability gene effect may be
linked to one specific lipid endpoint but not another,
while later findings may fail to corroborate earlier ones.
For example, Humphries et al. [21] were unable to
replicate their earlier finding linking the wild-type allele

Fig. 1. Relationship between change in total cholesterol and change
in weight by apoE o4 carrier status.
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Fig. 2. Relationship between change in apoB and change in weight by
apoE o4 carrier status.

An alternative explanation for our findings might be
that a true effect of ‘variability’ genes exists but that the
short-term and long-term effects are different. Most
previous studies have been short term but data from
twin studies [51] and from longitudinally followed co-
horts (such as the cardiovascular risk in Young Finns
study [52]) suggest the operation of longer-term gene-
environment interactions.

Finally, it may be naı̈ve to posit an effect which is
not context or population dependent. The habitual diet
or the varying allele prevalence of the genes involved in
metabolic regulation might all contribute to disparate
findings in different populations [53]. Ordovas found,
for example that in studies which had successfully
reduced the total fat in the diet, o4 subjects were more
likely to be hyper-responders; whereas in studies that
modified the saturation rather than the fat amount, o4
subjects were more likely to be hypo-responders but his
review was unable to control for weight loss (and in
most cases the data were not available) [53]. However,
adjustment for factors on the same causal pathway
could be viewed as over-adjustment and so the task
becomes even more daunting, considering the potential
for gene–gene interaction and the likelihood of dietary
regulation of gene expression.

The present study, perhaps uniquely, has focused on
the effect of weight loss on plasma lipids and how this
might be modulated by constitutional factors. Other
investigations of diet–gene interaction have studied the
relationship between particular dietary change and
changes in lipid levels, adjusting for changes in body
weight or BMI [23]. While one might be seduced into
‘dredging’ the data for associations not previously spe-
cified, we have not attempted to test null hypotheses
that were not directly related to the findings, which
gave this study its birth. We are unable to reject the
null hypothesis of no differential effect of weight loss
on plasma lipids in genetically defined subgroups in our
hospital clinic population.

Convincing evidence has been presented from numer-
ous trials and observational studies that a calorie-con-
trolled low saturated-fat diet that is rich in fruit and
vegetables can reduce mortality [54]. Even if the present
study had demonstrated that subgroups of patients
(who were likely to respond better to weight reduction)
could be identified by a simple genetic test, we are
unsure how such knowledge would affect their referral
and management practice. We doubt whether the de-
gree of blunted responsiveness, which we found among
carriers of o4 might be large enough to change clinical
practice.

Recently the UK Department of Health has itself
issued guidance on the appropriate place of genetic
‘susceptibility’ testing [55]. Aside from the difficult is-
sues surrounding consent, several basic tests of scientific
and clinical validity should be applied before offering

of the apoB gene signal peptide to hyper-responsiveness
to dietary change. Sometimes disparate findings and
different analytic strategies are reported from a single
study population (such as those from the North Karelia
Dietary Intervention Study by Tikkanen and colleagues
[22–25])

An alternative explanation is that our study had
insufficient power to detect a true effect. While this may
be the case, our study remains one of the largest of its
kind to date [26–49]. Making at least one repeat mea-
surement at baseline, as we have done, can reduce the
impact of regression to the mean and improve power to
dissect inter-individual differences [50]. None of the
previous studies specifically focused on weight change.
However, smaller studies than ours have demonstrated
a significant relationship between genetic factors, di-
etary change and the hypocholesterolaemic response.
However, if ‘negative’ studies of comparable size have
not been submitted or accepted for publication, then it
is possible that some of the previously positive studies
can be accounted for by Type I error.

We have found that there was a significantly blunted
responsiveness to weight loss among subjects with at
least one o4 allele. The effect size, nevertheless, is of
modest magnitude. Some smaller studies have found
either no effect or that subjects with at least one o4
allele are more likely to be hyper-responders to dietary
change. Nevertheless our findings are similar to those of
Sarkkinen in a study of comparable size to our own
[46].
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such tests. Of relevance here is (i) the requirement that
the genetic change sought is causally related to the
disorder; and (ii) the importance of considering how
phenotypic variability may be dependant on specific
types of mutations, other genes and other co-variates
such as age. For very few candidate genes of relevance
to cardiological practice have such issues been satisfac-
torily resolved. Our own findings re-inforce the view
that it would be premature to offer targeted lifestyle
advice based on the sorts of susceptibility-genotype
associations that have been published to date, many of
which have been uncovered through post hoc analyses.
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