157 research outputs found

    Query Expansion for Survey Question Retrieval in the Social Sciences

    Full text link
    In recent years, the importance of research data and the need to archive and to share it in the scientific community have increased enormously. This introduces a whole new set of challenges for digital libraries. In the social sciences typical research data sets consist of surveys and questionnaires. In this paper we focus on the use case of social science survey question reuse and on mechanisms to support users in the query formulation for data sets. We describe and evaluate thesaurus- and co-occurrence-based approaches for query expansion to improve retrieval quality in digital libraries and research data archives. The challenge here is to translate the information need and the underlying sociological phenomena into proper queries. As we can show retrieval quality can be improved by adding related terms to the queries. In a direct comparison automatically expanded queries using extracted co-occurring terms can provide better results than queries manually reformulated by a domain expert and better results than a keyword-based BM25 baseline.Comment: to appear in Proceedings of 19th International Conference on Theory and Practice of Digital Libraries 2015 (TPDL 2015

    Association of self-reported and device-measured sedentary behaviour and physical activity with health-related quality of life among european older adults

    Get PDF
    Human movement behaviours such as physical activity (PA) and sedentary behaviour (SB) during waking time have a significant impact on health-related quality of life (HRQoL) in older adults. In this study, we aimed to analyse the association between self-reported and device-measured SB and PA with HRQoL in a cohort of community-dwelling older adults from four European countries. A subsample of 1193 participants from the SITLESS trial (61% women and 75.1 ± 6.2 years old) were included in the analysis. The association between self-reported and objective measures of SB and PA with HRQoL were quantified using Spearman’s Rho coefficients. The strength of the associations between self-reported and device-measured PA and SB with self-rated HRQoL (mental composite score, MCS; physical composite score, PCS) were assessed through multivariate multiple regression analysis. Self-reported and device-measured PA and SB levels showed significant but poor associations with PCS (p < 0.05). The association with MCS was only significant but poor with self-reported light PA (LPA) and moderate-to-vigorous PA (MVPA). In conclusion, the findings of this study suggest that both self-reported and device-measured PA of all intensities were positively and significantly associated, while SB was negatively and significantly associated with the PCS of the SF-12. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    A Yellow Fever 17D virus replicon-based vaccine platform for emerging Coronaviruses

    Get PDF
    The tremendous global impact of the current SARS-CoV-2 pandemic, as well as other current and recent outbreaks of (re)emerging viruses, emphasize the need for fast-track development of effective vaccines. Yellow fever virus 17D (YF17D) is a live-attenuated virus vaccine with an impressive efficacy record in humans, and therefore, it is a very attractive platform for the development of novel chimeric vaccines against various pathogens. In the present study, we generated a YF17D-based replicon vaccine platform by replacing the prM and E surface proteins of YF17D with antigenic subdomains from the spike (S) proteins of three different betacoronaviruses: MERS-CoV, SARS-CoV and MHV. The prM and E proteins were provided in trans for the packaging of these RNA replicons into single-round infectious particles capable of expressing coronavirus antigens in infected cells. YF17D replicon particles expressing the S1 regions of the MERS-CoV and SARS-CoV spike proteins were immunogenic in mice and elicited (neutralizing) antibody responses against both the YF17D vector and the coronavirus inserts. Thus, YF17D replicon-based vaccines, and their potential DNA- or mRNA-based derivatives, may constitute a promising and particularly safe vaccine platform for current and future emerging coronaviruses.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    Corpora amylacea are associated with tau burden and cognitive status in Alzheimer\u27s disease

    Get PDF
    Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cellular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer\u27s disease (AD), remains poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages II-III, then steadily declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau burden

    The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model

    Get PDF
    BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment

    Increasing mean age of head and neck cancer patients at a German tertiary referral center

    Get PDF
    Background: The impact of demographic change on the age at diagnosis in German head and neck cancer (HNC) patients is unclear. Here we present an evaluation of aging trends in HNC at a tertiary referral center. Methods: Retrospective cohort study on aging trends at the initial diagnosis of newly diagnosed patients with HNC between 2004 and 2018 at the head and neck cancer center Ulm in relation to demographic data of the catchment area. Results: The study population consisted of 2450 individuals diagnosed with HNC with a mean age of 62.84 (±11.67) years. We observed a significant increase in annual incidence rates and mean age over time. Mean age among HNC patients increased significantly more than among the population in the catchment area. Whereas the incidence rate of patients <50 years did not change, the incidence of HNC patients aged ≥70 years increased the most. The mean patient age in the main tumor sites increased significantly. Surprisingly, HPV-positive patients were not younger than HPV-negative patients, but showed a non-significant trend towards a higher mean age (63.0 vs. 60.7 years). Conclusions: Increasing incidence rates in older patients pose a challenge for health care systems. A nationwide study is needed to assess the dynamics and impact of aging on the incidence of HNC

    Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    Get PDF
    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process

    Heterologous Replacement of the Supposed Host Determining Region of Avihepadnaviruses: High In Vivo Infectivity Despite Low Infectivity for Hepatocytes

    Get PDF
    Hepadnaviruses, including hepatitis B virus (HBV), a highly relevant human pathogen, are small enveloped DNA viruses that replicate via reverse transcription. All hepadnaviruses display a narrow tissue and host tropism. For HBV, this restricts efficient experimental in vivo infection to chimpanzees. While the cellular factors mediating infection are largely unknown, the large viral envelope protein (L) plays a pivotal role for infectivity. Furthermore, certain segments of the PreS domain of L from duck HBV (DHBV) enhanced infectivity for cultured duck hepatocytes of pseudotyped heron HBV (HHBV), a virus unable to infect ducks in vivo. This implied a crucial role for the PreS sequence from amino acid 22 to 90 in the duck tropism of DHBV. Reasoning that reciprocal replacements would reduce infectivity for ducks, we generated spreading-competent chimeric DHBVs with L proteins in which segments 22–90 (Du-He4) or its subsegments 22–37 and 37–90 (Du-He2, Du-He3) are derived from HHBV. Infectivity for duck hepatocytes of Du-He4 and Du-He3, though not Du-He2, was indeed clearly reduced compared to wild-type DHBV. Surprisingly, however, in ducks even Du-He4 caused high-titered, persistent, horizontally and vertically transmissable infections, with kinetics of viral spread similar to those of DHBV when inoculated at doses of 108 viral genome equivalents (vge) per animal. Low-dose infections down to 300 vge per duck did not reveal a significant reduction in specific infectivity of the chimera. Hence, sequence alterations in PreS that limited infectivity in vitro did not do so in vivo. These data reveal a much more complex correlation between PreS sequence and host specificity than might have been anticipated; more generally, they question the value of cultured hepatocytes for reliably predicting in vivo infectivity of avian and, by inference, mammalian hepadnaviruses, with potential implications for the risk assessment of vaccine and drug resistant HBV variants
    • …
    corecore