11 research outputs found

    Dietary fish oil preserves cardiac function in the hypertrophied rat heart

    Get PDF
    Regular fish or fish oil intake is associated with a low incidence of heart failure clinically, and fish oil-induced reduction in cardiac remodelling seen in hypertrophy models may contribute. We investigated whether improved cardiac energy efficiency in non-hypertrophied hearts translates into attenuation of cardiac dysfunction in hypertrophied hearts. Male Wistar rats (n 33) at 8 weeks of age were sham-operated or subjected to abdominal aortic stenosis to produce pressure-overload cardiac hypertrophy. Starting 3 weeks post-operatively to follow initiation of hypertrophy, rats were fed a diet containing 10% olive oil (control) or 5% fish oil (ROPUFA® 30 (17% EPA, 10% DHA))+5% olive oil (FO diet). At 15 weeks post-operatively, ventricular haemodynamics and oxygen consumption were evaluated in the blood-perfused, isolated working heart. Resting and maximally stimulated cardiac output and external work were >60% depressed in hypertrophied control hearts but this was prevented by FO feeding, without attenuating hypertrophy. Cardiac energy efficiency was lower in hypertrophy, but greater in FO hearts for any given cardiac mass. Coronary blood flow, restricted in hypertrophied control hearts, increased with increasing work in hypertrophied FO hearts, revealing a significant coronary vasodilator reserve. Pronounced cardiac dysfunction in hypertrophied hearts across low and high workloads, indicative of heart failure, was attenuated by FO feeding in association with membrane incorporation of n-3 PUFA, principally DHA. Dietary fish oil may offer a new approach to balancing the high oxygen demand and haemodynamic requirements of the failing hypertrophied heart independently of attenuating hypertroph

    Dietary fish oil preserves cardiac function in the hypertrophied rat heart

    Get PDF
    Regular fish or fish oil intake is associated with a low incidence of heart failure clinically, and fish oil-induced reduction in cardiac remodelling seen in hypertrophy models may contribute. We investigated whether improved cardiac energy efficiency in non-hypertrophied hearts translates into attenuation of cardiac dysfunction in hypertrophied hearts. Male Wistar rats (n 33) at 8 weeks of age were sham- operated or subjected to abdominal aortic stenosis to produce pressure-overload cardiac hypertrophy. Starting 3 weeks post-operatively to follow initiation of hypertrophy, rats were fed a diet containing 10% olive oil (control) or 5% fish oil (ROPUFA30 (17% EPA, 10% DHA)) + 5% olive oil (FO diet). At 15 weeks post-operatively, ventricular haemodynamics and oxygen consumption were evaluated in the blood-perfused, isolated working heart. Resting and maximally stimulated cardiac output and external work were 60% depressed in hypertrophied control hearts but this was prevented by FO feeding, without attenuating hypertrophy. Cardiac energy efficiency was lower in hypertrophy, but greater in FO hearts for any given cardiac mass. Coronary blood flow, restricted in hypertrophied control hearts, increased with increasing work in hypertrophied FO hearts, revealing a significant coronary vasodilator reserve. Pronounced cardiac dysfunction in hypertrophied hearts across low and high workloads, indicative of heart failure, was attenuated by FO feeding in association with membrane incorporation of n-3 PUFA, principally DHA. Dietary fish oil may offer a new approach to balancing the high oxygen demand and haemodynamic requirements of the failing hypertrophied heart independently of attenuating hypertrophy

    Dietary fish oil dose-response effects on ileal phospholipid fatty acids and contractility

    No full text
    We have reported that dietary fish oil (FO) leads to the incorporation of long-chain n−3 PUFA into the gut tissue of small animal models, affecting contractility, particularly of rat ileum. This study examined the FO dose response for the incorporation of n−3 PUFA into ileal tissue and how this correlated with in vitro contractility. Groups of ten to twelve 13-wk-old Wistar-Kyoto rats were fed 0, 1, 2.5, and 5% FO-supplemented diets balanced with sunflower seed oil for 4 wk, after which ileal total phospholipid FA were determined and in vitro contractility assessed. For the total phospholipid fraction, increasing the dietary FO levels led to a significant increase first evident at 1% FO, with a stepwise, nonsaturating six-fold increase in n−3 PUFA as EPA (20∶5n−3), DPA (docosapentaenoic acid, 22∶5n−3), and DHA, but mainly as DHA (22∶6n−3), replacing the n−6 PUFA linoleic acid (18∶2n−6) and arachidonic acid (20∶4n−6) over the dosage range. There was no difference in KCl-induced depolarization-driven contractility. However, a significant increase in receptor-dependent maximal contractility occurred at 1% FO for carbachol and at 2.5% FO for prostaglandin E2, with a concomitant increase in sensitivity for prostaglandin E2 at 2.5 and 5% FO. These results demonstrate that significant increases in ileal membrane n−3 PUFA occurred at relatively low doses of dietary FO, with differential receptor-dependent increases in contractility observed for muscarinic and prostanoid agonists.Glen S. Patten, Michael J. Adams, A. Dallimore and Mahinda Y. Abeywarden

    Strain Energy During Mechanical Milling: Part I. Mathematical Modeling

    No full text
    In this study, we formulate a mathematical model that can be implemented to calculate the amount of strain energy both introduced to (U (i)) and stored in (U (s)) metal powders during mechanical milling. The theoretical analysis presented in this study proposes that the strain energy is primarily induced by normal and shear strains, and moreover, that the contributions from torsion can be neglected. This theoretical framework was implemented to evaluate the influence of various mechanical milling processing parameters on U (i) and U (s). The calculated results show that the magnitude of U (i) increases with increases in the following processing parameters: attritor diameter, impeller\u27s rotational frequency, and ball-to-powder mass ratio, and the magnitude of U (i) increases with a decrease in diameter of the milling media. The percentage of the shear strains\u27 contribution to the total U (i) is insensitive to the mechanical milling processing parameters, varying within the range of 35 pct to 42 pct. The calculated magnitude of U (s) ranges from a few to a few tens of joules per gram, which is three to four orders of magnitude lower than that of the calculated U (i). Although with respect to the mechanical milling processing parameters, the calculated U (s) has trends similar to those for U (i), the changing rates of U (s) are much lower than those for U (i)
    corecore