275 research outputs found

    Impiego di DTM ad alta risoluzione per la misura automatica di larghezze al bankfull

    Get PDF
    The study of the morphological characteristics of rivers and of their degree morphological alterations, is a basis for a proper management of mountain watershed: the availability of detailed topographic data is a key tool. The evaluation of channel geometry variability, determined by hydrodynamic and geomorphological processes, is usually gathered through field surveys, or through visual interpretations of digital orthophotos. However, the topographic data obtained through visual interpretation are not sufficiently accurate to allow the identification and the correct mapping of channel geometries. On the other hand, even if they provide more reliable data, field surveys require considerable time and financial resources, and they are often challenged by the inaccessibility of the areas under analysis. It is therefore strategic to adopt new and more accurate methods to estimate channel geometries, based on the availability of high-resolution data, such as the one derived from airborne laser scanner (LiDAR). LiDAR technology enables the acquisition of high resolution topographic data over large areas, with vertical and horizontal accuracy of a few centimeters (10-20 cm for the vertical component and 0.5-2 m for horizontal), contributing to a better representation the Earth's surface at more affordable costs. In mountain areas many studies have explored the potential of LiDAR DTM for the proper characterization of the network and the objective of this paper is to highlight their potential in the automatic determination of values representative of bankfull widths. The analysis is based on a topographic index (Elevation Percentile) used to measure the variability of the elevation from 1 m DTM resolution. This index is derived by calculating within a moving window the number of cells with elevation higher than the central pixel. This number is then normalized to the extension of the moving window: channelized areas have an EP value greater than convex areas. Applying a statistical threshold to the EP, it is possible to obtain a Boolean map of potential river bed. The geometries derived from this map are approximated due to the resolution of the DTM, but it is possible to consider the topographic representation of the banks and to approximate the bankfull width. In an automatic manner, moving downstream along the thalweg, it is possible to estimate perpendicularly to the flow directions, the bankfull width at each point of the network, with the above-mentioned limit of the DTM resolution. Automatically derived widths show a good agreement with those detected in the field, with low values of RMSE, and the range of the estimated values is compatible with the surveyed ones

    An objective approach for feature extraction: distribution analysis and statistical descriptors for scale choice and channel network identification

    Get PDF
    A statistical approach to LiDAR derived topographic attributes for the automatic extraction of channel network and for the choice of the scale to apply for parameter evaluation is presented in this paper. The basis of this approach is to use distribution analysis and statistical descriptors to identify channels where terrain geometry denotes significant convergences. Two case study areas with different morphology and degree of organization are used with their 1 m LiDAR Digital Terrain Models (DTMs). Topographic attribute maps (curvature and openness) for various window sizes are derived from the DTMs in order to detect surface convergences. A statistical analysis on value distributions considering each window size is carried out for the choice of the optimum kernel. We propose a three-step method to extract the network based (a) on the normalization and overlapping of openness and minimum curvature to highlight the more likely surface convergences, (b) a weighting of the upslope area according to these normalized maps to identify drainage flow paths and flow accumulation consistent with terrain geometry, (c) the standard score normalization of the weighted upslope area and the use of standard score values as non subjective threshold for channel network identification. As a final step for optimal definition and representation of the whole network, a noise-filtering and connection procedure is applied. The advantage of the proposed methodology, and the efficiency and accurate localization of extracted features are demonstrated using LiDAR data of two different areas and comparing both extractions with field surveyed networks

    Downstream hydraulic geometry relationships: Gathering reference reach-scale width values from LiDAR

    Get PDF
    This paper examines the ability of LiDAR topography to provide reach-scale width values for the analysis of downstream hydraulic geometry relationships along some streams in the Dolomites (northern Italy). Multiple reach-scale dimensions can provide representative geometries and statistics characterising the longitudinal variability in the channel, improving the understanding of geomorphic processes across networks. Starting from the minimum curvature derived from a LiDAR DTM, the proposed algorithm uses a statistical approach for the identification of the scale of analysis, and for the automatic characterisation of reach-scale bankfull widths. The downstream adjustment in channel morphology is then related to flow parameters (drainage area and stream power). With the correct planning of a LiDAR survey, uncertainties in the procedure are principally due to the resolution of the DTM. The outputs are in general comparable in quality to field survey measurements, and the procedure allows the quick comparison among different watersheds. The proposed automatic approach could improve knowledge about river systems with highly variable widths, and about systems in areas covered by vegetation or inaccessible to field surveys. With proven effectiveness, this research could offer an interesting starting point for the analysis of differences betweenwatersheds, and to improve knowledge about downstream channel adjustment in relation, for example, to scale and landscape forcing (e.g. sediment transport, tectonics, lithology, climate, geomorphology, and anthropic pressure)

    Automatic measurement of glacier ice ablation using thermistor strings

    Get PDF
    In this work we tested the suitability of thermistor strings as automatic tools for the continuous measurement of glacier ice ablation. Experimental data collected in summer 2017 over an Italian glacier provided ice ablation readings with accuracy similar to manual measurements with ablation stakes and other automatic systems, like the draw-wire method and the B\uf8ggild ablatometer. Thermistor strings have potential for future applications in remote glacier monitoring, thanks to their flexibility, simple construction, and robustness

    TERRESTRIAL LASER SCANNER DATA TO SUPPORT COASTAL EROSION ANALYSIS: THE CONERO CASE STUDY

    Get PDF
    In this work a detailed TLS survey was carried out in summer 2012, in the Conero Regional Park (Marche, province of Ancona), along the "spiaggia San Michele" and "spiaggia Sassi Neri". These areas present several sections affected by erosion, rock falls and slope failures. They also belong to a very prestigious place for tourism during the summer season; therefore, deriving a risk map for these areas is really useful. Thanks to the TLS survey, it was possible to obtain a centimetre resolution DTM covering a reach of about 1.5 km of the coast. This high resolution DTM was used to derive some primary topographic attributes that allowed to arrange a preliminary discussion about the likely unstable areas. These topographic information and results will also serve as the reference point for future yearly TLS surveys, which will absolutely help in recognizing any micro changes and slope failures, improving the risk maps

    Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): Effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling

    Get PDF
    Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect), and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers, compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium- to large-size glaciers so far, while observations on smaller ice bodies are scarce. Using a dataset from 8 on-glacier and 4 off-glacier weather stations, collected in summer 2010 and 2011, we analyzed the air temperature distribution variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, highlighting suggesting the likely existence of important reinforcing mechanisms during glacier decay and disintegration. None of the methods proposed in the literature for calculating on-glacier temperature from off-glacier data fully reproduced our observations. Among them, the more physically-based procedure of Greuell and B\uf6hm [1998] provided the best overall results where the KBL prevail, but it was not effective elsewhere (i.e. on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability

    The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment

    Get PDF
    This study investigates the role of soil moisture on the threshold runoff response in a small headwater catchment in the Italian Alps that is characterised by steep hillslopes and a distinct riparian zone. This study focuses on: (i) the threshold soil moisture-runoff relationship and the influence of catchment topography on this relation; (ii) the temporal dynamics of soil moisture, streamflow and groundwater that characterize the catchment's response to rainfall during dry and wet periods; and (iii) the combined effect of antecedent wetness conditions and rainfall amount on hillslope and riparian runoff. Our results highlight the strong control exerted by soil moisture on runoff in this catchment: a sharp threshold exists in the relationship between soil water content and runoff coefficient, streamflow, and hillslope-averaged depth to water table. Low runoff ratios were likely related to the response of the riparian zone, which was almost always close to saturation. High runoff ratios occurred during wet antecedent conditions, when the soil moisture threshold was exceeded. In these cases, subsurface flow was activated on hillslopes, which became a major contributor to runoff. Antecedent wetness conditions also controlled the catchment's response time: during dry periods, streamflow reacted and peaked prior to hillslope soil moisture whereas during wet conditions the opposite occurred. This difference resulted in a hysteretic behaviour in the soil moisture-streamflow relationship. Finally, the influence of antecedent moisture conditions on runoff was also evident in the relation between cumulative rainfall and total stormflow. Small storms during dry conditions produced low stormflow amounts, likely mainly from overland flow from the near saturated riparian zone. Conversely, for rainfall events during wet conditions, higher stormflow values were observed and hillslopes must have contributed to streamflow

    High-Resolution monitoring of current rapid transformations on glacial and periglacial environments

    Get PDF
    Glacial and periglacial environments are highly sensitive to climatic changes. Processes of cryosphere degradation may strongly impact human activities and infrastructures, and need to be monitored for improved understanding and for mitigation/adaptation. Studying glacial and periglacial environments using traditional techniques may be difficult or not feasible, but new remote sensing techniques like terrestrial and aerial laser scanner opened new possibilities for cryospheric studies. This work presents an application of the terrestrial laser scanner (TLS) for monitoring the current rapid changes occurring on the Montasio Occidentale glacier (Eastern Italian alps), which is representative of low-altitude, avalanche-fed and debris-cover glaciers. These glaciers are quite common in the Alps but their reaction to climate changes is still poorly known. The mass balance, surface velocity fields, debris cover dynamics and effects of meteorological extremes were investigated by repeat high-resolution TLS scanning from September 2010 to October 2012. The results were encouraging and shed light on the peculiar response of this glacier to climatic changes, on its current dynamics and on the feedback played by the debris cover, which is critical for its preservation. The rapid transformations in act, combined with the unstable ice mass, large amount of loose debris and channeled runoff during intense rainfalls, constitute a potential area for the formation of large debris flows, as shown by field evidences and documented by the recent literature

    The current deglaciation of the Ortles-Cevedale massif (Eastern Italian Alps): impacts, controls and degree of imbalance.

    Get PDF
    The Ortles-Cevedale is the largest glacierized mountain group of the Italian Alps hosting 112 ice bodies, with a total area of 76.8 km2. Since the 1980\u2019s, this massif is undergoing a rapid deglaciation, as most of the mountain ranges in the European Alps. The aims of this work were: i) to quantify area and volume change of the Ortles- Cevedale glacier system from the 1980s to the 2000s; ii) to improve the knowledge of factors controlling the spatial variability of the deglaciation; and iii) to assess the degree of imbalance of individual glaciers with respect to the present climate conditions. Two inventories were created, based on Landsat5 TM scenes of 20-09-1987 and 31-08-2009. Contrast-enhanced composites (bands TM5, TM4 and TM3), aerial photos and field surveys (for the most recent period) were used to correct the automatic delineation of glaciers derived from a hard classification based on a threshold applied to a TM3/TM5 ratio image. Since Landsat scenes were acquired at the end of the ablation seasons and fresh snow was absent, the accumulation areas could be roughly determined by mapping the snow covered area. This region was identified from the difference in reflectance between snow and ice in the near infrared band of Landsat (TM4), and mapped after correcting topographic effects to determine surface reflectance. The area-averaged geodetic mass budget was then calculated for the individual glaciers by differencing two Digital Terrain Models (2000s minus 1980s, derived from LiDAR and aerial photogrammetry) and combining the result with the glacier outlines. Afterwards, we examined the mass balance data using statistical analyses (Correlation matrices, Principal Component Analysis, Cluster Analysis). This allowed us highlighting clusters of glaciers, which exhibit a similar behavior, identify the outlayers and the relative influence of the factors controlling spatial variability of the mass losses. Finally, we assessed the degree of imbalance of individual glaciers by comparing the current Accumulation Area Ratios (AAR) with the balanced-budget AAR (AAR0), the latter also accounting for the debris cover of glaciers. We found that the total area loss of the Ortles-Cevedale glaciers from 1987 to 2009 amounts to 23.5 km2, i.e. 23.4% of the initial area. On the other hand, the AAR of the entire glacier system was 0.3 in both investigated years. The overall debris cover increased from 10.5% to 16.3%. The geodetic mass balance rate was -0.7 m w.e. y1(as an average on 112 ice bodies), ranging from -0.1 to -1.7 m w.e. y1. We also found that the main controls of the differing change of single glaciers are related to their hypsometry (elevation range and slope), AAR, feeding source and debris cover. Interestingly, a significant correlation was found between AAR, AAR0 and debris cover. This information was used to assess and visualize the needed additional reduction of individual glaciers to reach equilibrium with the current size of their accumulation areas. This amounts on average to a further reduction of 40% of the current areal extent of glaciers

    Impact of Po Valley emissions on the highest glacier of the Eastern European Alps

    Get PDF
    Abstract. In June 2009, we conducted the first extensive glaciological survey of Alto dell'Ortles, the uppermost glacier of Mt. Ortles (3905 m a.s.l.), the highest summit of the Eastern European Alps. This section of the Alps is located in a rain shadow and is characterized by the lowest precipitation rate in the entire Alpine arc. Mt. Ortles offers a unique opportunity to test deposition mechanisms of chemical species that until now were studied only in the climatically-different western sector. We analyzed snow samples collected on Alto dell'Ortles from a 4.5 m snow-pit at 3830 m a.s.l., and we determined a large suite of trace elements and ionic compounds that comprise the atmospheric deposition over the past two years. Trace element concentrations measured in snow samples are extremely low with mean concentrations at pg g−1 levels. Only Al and Fe present median values of 1.8 and 3.3 ng g−1, with maximum concentrations of 21 and 25 ng g−1. The median crustal enrichment factor (EFc) values for Be, Rb, Sr, Ba, U, Li, Al, Ca, Cr, Mn, Fe, Co, Ga and V are lower than 10 suggesting that these elements originated mainly from soil and mineral aerosol. EFc higher than 100 are reported for Zn (118), Ag (135), Bi (185), Sb (401) and Cd (514), demonstrating the predominance of non-crustal depositions and suggesting an anthropogenic origin. Our data show that the physical stratigraphy and the chemical signals of several species were well preserved in the uppermost snow of the Alto dell'Ortles glacier. A clear seasonality emerges from the data as the summer snow is more affected by anthropogenic and marine contributions while the winter aerosol flux is dominated by crustal sources. For trace elements, the largest mean EFc seasonal variations are displayed by V (with a factor of 3.8), Sb (3.3), Cu (3.3), Pb (2.9), Bi (2.8), Cd (2.1), Zn (1.9), Ni (1.8), Ag (1.8), As (1.7) and Co (1.6). When trace species ratios in local and Po Valley emissions are compared with those in Alto dell'Ortles snow, the deposition on Mt. Ortles is clearly linked with Po Valley summer emissions. Despite climatic differences between the Eastern and Western Alps, trace element ratios from Alto dell'Ortles are comparable with those obtained from high-altitude glaciers in the Western Alps, suggesting similar sources and transport processes at seasonal time scales in these two distinct areas. In particular, the large changes in trace element concentrations both in the Eastern and Western Alps appear to be more related to the regional vertical structure of the troposphere rather than the synoptic weather patterns
    • 

    corecore