3 research outputs found

    Nanofibrillated Cellulose-Based Aerogels Functionalized with Tajuva (Maclura tinctoria) Heartwood Extract

    Get PDF
    Aerogels are 3-D nanostructures of non-fluid colloidal interconnected porous networks consisting of loosely packed bonded particles that are expanded throughout their volume by gas and exhibit ultra-low density and high specific surface area. Cellulose-based aerogels can be obtained from hydrogels through a drying process, replacing the solvent (water) with air and keeping the pristine three-dimensional arrangement. In this work, hybrid cellulose-based aerogels were produced and their potential for use as dressings was assessed. Nanofibrilated cellulose (NFC) hydrogels were produced by a co-grinding process in a stone micronizer using a kraft cellulosic pulp and a phenolic extract from Maclura tinctoria (Tajuva) heartwood. NFC-based aerogels were produced by freeze followed by lyophilization, in a way that the Tajuva extract acted as a functionalizing agent. The obtained aerogels showed high porosity (ranging from 97% to 99%) and low density (ranging from 0.025 to 0.040 g·cm−3), as well a typical network and sheet-like structure with 100 to 300 μm pores, which yielded compressive strengths ranging from 60 to 340 kPa. The reached antibacterial and antioxidant activities, percentage of inhibitions and water uptakes suggest that the aerogels can be used as fluid absorbers. Additionally, the immobilization of the Tajuva extract indicates the potential for dentistry applications.The APC was funded by University of the Basque Country. CAPES (Coordination for the Improvement of Higher Education Personnel) for the doctoral scholarship of the first author

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore