93 research outputs found

    Haptic-Enhanced Virtual Reality Simulator for Robot-Assisted Femur Fracture Surgery

    Full text link
    In this paper, we develop a virtual reality (VR) simulator for the Robossis robot-assisted femur fracture surgery. Due to the steep learning curve for such procedures, a VR simulator is essential for training surgeon(s) and staff. The Robossis Surgical Simulator (RSS) is designed to immerse user(s) in a realistic surgery setting using the Robossis system as completed in a previous real-world cadaveric procedure. The RSS is designed to interface the Sigma-7 Haptic Controller with the Robossis Surgical Robot (RSR) and the Meta Quest VR headset. Results show that the RSR follows user commands in 6 DOF and prevents the overlapping of bone segments. This development demonstrates a promising avenue for future implementation of the Robossis system.Comment: This paper is submitted to the IEEE Haptic Symposium 202

    COST292 experimental framework for TRECVID 2006

    Get PDF
    In this paper we give an overview of the four TRECVID tasks submitted by COST292, European network of institutions in the area of semantic multimodal analysis and retrieval of digital video media. Initially, we present shot boundary evaluation method based on results merged using a confidence measure. The two SB detectors user here are presented, one of the Technical University of Delft and one of the LaBRI, University of Bordeaux 1, followed by the description of the merging algorithm. The high-level feature extraction task comprises three separate systems. The first system, developed by the National Technical University of Athens (NTUA) utilises a set of MPEG-7 low-level descriptors and Latent Semantic Analysis to detect the features. The second system, developed by Bilkent University, uses a Bayesian classifier trained with a "bag of subregions" for each keyframe. The third system by the Middle East Technical University (METU) exploits textual information in the video using character recognition methodology. The system submitted to the search task is an interactive retrieval application developed by Queen Mary, University of London, University of Zilina and ITI from Thessaloniki, combining basic retrieval functionalities in various modalities (i.e. visual, audio, textual) with a user interface supporting the submission of queries using any combination of the available retrieval tools and the accumulation of relevant retrieval results over all queries submitted by a single user during a specified time interval. Finally, the rushes task submission comprises a video summarisation and browsing system specifically designed to intuitively and efficiently presents rushes material in video production environment. This system is a result of joint work of University of Bristol, Technical University of Delft and LaBRI, University of Bordeaux 1

    Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes

    Get PDF
    The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precise assembly of sarcomeres, the basic units of myofibrils, are poorly understood. To gain insights into this process, we investigated the functional relationships of sarcomeric protein complexes. Specifically, we systematically analyzed, using either RNAi in primary muscle cells or available genetic mutations, the organization of myofibrils in Drosophila muscles that lack one or more sarcomeric proteins. Our study reveals that the thin and thick filaments are mutually dependent on each other for striation. Further, the tension sensor complex comprised of zipper/Zasp/α-actinin is involved in stabilizing the sarcomere but not in its initial formation. Finally, integrins appear essential for the interdigitation of thin and thick filaments that occurs prior to striation. Thus, sarcomere formation occurs by the coordinated assembly of multiple latent protein complexes, as opposed to sequential assembly

    A 2-hop coloring-based collision free infrastructure design for Wireless Sensor Networks

    No full text
    13th HONET-ICT International Symposium on Smart MicroGrids for Sustainable Energy Sources Enabled by Photonics and IoT Sensors, HONET-ICT 2016 -- 13 October 2016 through 14 October 2016 -- 125073This paper mainly proposes a design for a communication infrastructure for Wireless Sensor Networks. The proposed design prevents message collisions by arranging the time schedules to send, receive, forward and overhear packets of the nodes considering 2-hop graph coloring mechanism. The system aims to exclude the compromised nodes in the network using the overhearing mechanism, and copes with recovering the paths of the legitimate nodes using multipath redundancy. The proposed scheduling-based and overhearing supported infrastructure brings the advantage of providing the Sensor Networks with both reliable communication using backup paths and energy conservation by preventing the collisions. © 2016 IEEE

    A survey on security in wireless sensor networks: Attacks and defense mechanisms

    No full text
    Wireless Sensor Network (WSN) is a promising technology that has attracted the interest of research in the last decade. Security is one of the fundamental issues in sensor networks since sensor nodes are very resource constrained. An attacker may modify, insert, and delete new hardware and software components to the system where a single node, a specific part of the sensing area, and the whole network may become inoperable. Thus, the design of early attack detection and defense mechanisms must be carefully considered. In this chapter, the authors survey attacks and their defense mechanisms in WSNs. Attacks are categorized according to the related protocol layer. They also investigate the open research issues and emerging technologies on security in WSNs

    Deep peroneal motor nerve conduction velocity distribution and correlation between nerve conduction groups and the number of innervated muscle fibers

    No full text
    In this study, the distribution of peroneal-nerve conduction velocity was studied in 17 normal subjects, using the collision method. Paired supramaximal stimuli with predetermined interstimulus intervals (ISI) were applied at distal and proximal points of peroneal nerve and the resultant compound muscle action potentials (CMAPs) were recorded. The change in CMAP amplitudes and areas with ISI were deduced, and the relative number of fibers corresponding to each conduction velocity group (CVG) were computed. Conduction velocities of the peroneal motor nerve innervating the Extensor Digitorum Brevis (EDB) muscle were found to be in the range of 28-52 m/s and CVG innervating the greatest number appears to be in 40-48 m/s range, which consists of 70% of all fibers. These results show that, compared with the median motor nerve, deep peroneal motor nerve that innervates the EDB muscle consist of slow fibers.2002-078Received 18 December 2003. This work was supported by grants from Selcuk University Research Fund (2002-078). This work was partly presented at the 13th Balkan Biochemical & Biophysical Days, 12–15 October 2003, Kusadasi, Turkey. The authors wish to thank nurse Sukran Atici of Neurology department for her valuable help. Address correspondence to Nizamettin Dalkiliç, Selcuk University, Meram Medical Faculty, Biophysics Department, 42080, Konya Turkey. E-mail: [email protected]
    • …
    corecore