7 research outputs found

    SEPIa, a knowledge-driven algorithm for predicting conformational B-cell epitopes from the amino acid sequence.

    Get PDF
    The identification of immunogenic regions on the surface of antigens, which are able to be recognized by antibodies and to trigger an immune response, is a major challenge for the design of new and effective vaccines. The prediction of such regions through computational immunology techniques is a challenging goal, which will ultimately lead to a drastic limitation of the experimental tests required to validate their efficiency. However, current methods are far from being sufficiently reliable and/or applicable on a large scale.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Cation-pi, amino-pi, pi-pi, and H-bond interactions stabilize antigen-antibody interfaces.

    No full text
    The identification of immunogenic regions on the surface of antigens, which are able to stimulate an immune response, is a major challenge for the design of new vaccines. Computational immunology aims at predicting such regions-in particular B-cell epitopes-but is far from being reliably applicable on a large scale. To gain understanding into the factors that contribute to the antigen-antibody affinity and specificity, we perform a detailed analysis of the amino acid composition and secondary structure of antigen and antibody surfaces, and of the interactions that stabilize the complexes, in comparison with the composition and interactions observed in other heterodimeric protein interfaces. We make a distinction between linear and conformational B-cell epitopes, according to whether they consist of successive residues along the polypeptide chain or not. The antigen-antibody interfaces were shown to differ from other protein-protein interfaces by their smaller size, their secondary structure with less helices and more loops, and the interactions that stabilize them: more H-bond, cation-π, amino-π, and π-π interactions, and less hydrophobic packing; linear and conformational epitopes can clearly be distinguished. Often, chains of successive interactions, called cation/amino-π and π-π chains, are formed. The amino acid composition differs significantly between the interfaces: antigen-antibody interfaces are less aliphatic and more charged, polar and aromatic than other heterodimeric protein interfaces. Moreover, paratopes and epitopes-albeit to a lesser extent-have amino acid compositions that are distinct from general protein surfaces. This specificity holds promise for improving B-cell epitope prediction.Proteins 2014. © 2014 Wiley Periodicals, Inc.JOURNAL ARTICLESCOPUS: ar.jFLWOAinfo:eu-repo/semantics/publishe

    Study of a lipophilic captopril analogue binding to angiotensin I converting enzyme

    No full text
    International audienceHumanACE is a central component of the renin–angiotensin systemand amajor therapeutic target for cardiovascular diseases. The somatic form of the enzyme (sACE) comprises two homologous metallopeptidase domains (N and C), each bearing a zinc active site with similar but distinct substrate and inhibitor specificities. In this study, we present the biological activity of silacaptopril, a silylated analogue of captopril, and its binding affinity towards ACE. Based on the recently determined crystal structures of both the ACE domains, a series of docking calculations were carried out in order to study the structural characteristics and the binding properties of silacaptopril and its analogues with ACE

    Backbone and side chain NMR assignments of the H-NOX domain from Nostoc sp. in complex with BAY58-2667 (cinaciguat)

    No full text
    Soluble guanylate cyclase (sGC) enzyme is activated by the gaseous signaling agent nitric oxide (NO) and triggers the conversion of GTP (guanosine 5′-triphosphate) to cGMP (cyclic guanylyl monophosphate). It contains the heme binding H-NOX (heme- nitric oxide/oxygen binding) domain which serves as the sensor of NO and it is highly conserved across eukaryotes and bacteria as well. Many research studies focus on the synthesis of chemical compounds bearing possible therapeutic action, which mimic the heme moiety and activate the sGC enzyme. In this study, we report a preliminary solution NMR (Nuclear Magnetic Resonance) study of the H-NOX domain from Nostoc sp. cyanobacterium in complex with the chemical sGC activator cinaciguat (BAY58-2667). An almost complete sequence-specific assignment of its 1H, 15N and 13C resonances was obtained and its secondary structure predicted by TALOS+

    Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity

    No full text
    The gasotransmitter nitric oxide (NO) is a critical endogenous regulator of homeostasis, in major part via the generation of cGMP (cyclic guanosine monophosphate) from GTP (guanosine triphosphate) by NO’s main physiological receptor, the soluble guanylate cyclase (sGC). sGC is a heterodimer, composed of an alpha 1 and a beta 1 subunit, of which the latter contains the heme-nitric oxide/oxygen (H-NOX) domain, responsible for NO recognition, binding and signal initiation. The NO/sGC/cGMP axis is dysfunctional in a variety of diseases, including hypertension and heart failure, especially since oxidative stress results in heme oxidation, sGC unresponsiveness to NO and subsequent degradation. As a central player in this axis, sGC is the focus of intense research efforts aiming to develop therapeutic molecules that enhance its activity. A class of drugs named sGC “activators” aim to replace the oxidized heme of the H-NOX domain, thus stabilizing the enzyme and restoring its activity. Although numerous studies outline the pharmacology and binding behavior of these compounds, the static 3D models available so far do not allow a satisfactory understanding of the structural basis of sGC’s activation mechanism by these drugs. Herein, application NMR describes different conformational states during the replacement of the heme by a sGC activators. We show that the two sGC activators (BAY 58-2667 and BAY 60-2770) significantly decrease the conformational plasticity of the recombinant H-NOX protein domain of Nostoc sp. cyanobacterium, rendering it a lot more rigid compared to the heme-occupied H-NOX. NMR methodology also reveals, for the first time, a surprising bi-directional competition between reduced heme and these compounds, pointing to a highly dynamic regulation of the H-NOX domain. This competitive, bi-directional mode of interaction is also confirmed by monitoring cGMP generation in A7r5 vascular smooth muscle cells by these activators. We show that, surprisingly, heme’s redox state impacts differently the bioactivity of these two structurally similar compounds. In all, by NMR-based and functional approaches we contribute unique experimental insight into the dynamic interaction of sGC activators with the H-NOX domain and its dependence on the heme redox status, with the ultimate goal to permit a better design of such therapeutically important molecules

    Putative bioactive conformations of amide linked cyclic myelin basic protein peptide analogues associated with experimental autoimmune encephalomyelitis

    No full text
    The solution models of cyclo(87−99) MBP87-99, cyclo(87−99) [Ala91,96] MBP87-99, and cyclo(87−99) [Arg91, Ala96] MBP87-99 have been determined through 2D NMR spectroscopy in DMSO-d6. Chemical shift analysis has been performed in an attempt to elucidate structural changes occurring upon substitution of native residues. NMR-derived geometrical constraints have been used in order to calculate high-resolution conformers of the above peptides. Conformational analysis of the three synthetic analogues show that the bioactivity, or the lack of it, may possibly be due to the distinct local structure observed and the subsequent differences in the overall topology and exposed area after binding with Major Histocompatibility Complex II (MHC II). It is believed that an overall larger solvent accessible area blocks the approach and binding of the T-cell receptor (TCR) on the altered peptide ligand (APL)−MHC complex, whereas more compact structures do not occlude weak interactions with an approaching TCR and can cause Experimental Autoimmune Encephalomyelitis (EAE) antagonism. A pharmacophore model based on the structural data has been generated
    corecore