32 research outputs found
Recommended from our members
Large-scale discovery of enhancers from human heart tissue.
Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart
Massively parallel functional dissection of mammalian enhancers in vivo
The functional consequences of genetic variation in mammalian regulatory elements are poorly understood. We report the in vivo dissection of three mammalian enhancers at single-nucleotide resolution through a massively parallel reporter assay. For each enhancer, we synthesized a library of >100,000 mutant haplotypes with 2-3% divergence from the wild-type sequence. Each haplotype was linked to a unique sequence tag embedded within a transcriptional cassette. We introduced each enhancer library into mouse liver and measured the relative activities of individual haplotypes en masse by sequencing the transcribed tags. Linear regression analysis yielded highly reproducible estimates of the effect of every possible single-nucleotide change on enhancer activity. The functional consequence of most mutations was modest, with ∼22% affecting activity by >1.2-fold and ∼3% by >2-fold. Several, but not all, positions with higher effects showed evidence for purifying selection, or co-localized with known liver-associated transcription factor binding sites, demonstrating the value of empirical high-resolution functional analysis
A Transgenic Model for Conditional Induction and Rescue of Portal Hypertension Reveals a Role of VEGF-Mediated Regulation of Sinusoidal Fenestrations
Portal hypertension (PH) is a common complication and a leading cause of death in patients with chronic liver diseases. PH is underlined by structural and functional derangement of liver sinusoid vessels and its fenestrated endothelium. Because in most clinical settings PH is accompanied by parenchymal injury, it has been difficult to determine the precise role of microvascular perturbations in causing PH. Reasoning that Vascular Endothelial Growth Factor (VEGF) is required to maintain functional integrity of the hepatic microcirculation, we developed a transgenic mouse system for a liver-specific-, reversible VEGF inhibition. The system is based on conditional induction and de-induction of a VEGF decoy receptor that sequesters VEGF and preclude signaling. VEGF blockade results in sinusoidal endothelial cells (SECs) fenestrations closure and in accumulation and transformation of the normally quiescent hepatic stellate cells, i.e. provoking the two processes underlying sinusoidal capillarization. Importantly, sinusoidal capillarization was sufficient to cause PH and its typical sequela, ascites, splenomegaly and venous collateralization without inflicting parenchymal damage or fibrosis. Remarkably, these dramatic phenotypes were fully reversed within few days from lifting-off VEGF blockade and resultant re-opening of SECs' fenestrations. This study not only uncovered an indispensible role for VEGF in maintaining structure and function of mature SECs, but also highlights the vasculo-centric nature of PH pathogenesis. Unprecedented ability to rescue PH and its secondary manifestations via manipulating a single vascular factor may also be harnessed for examining the potential utility of de-capillarization treatment modalities
Cytosolic PEPCK deficiency caused by a novel homozygous frame-shift variant presenting as resolved hypoglycemia and acute liver failure at birth
Cytosolic phosphoenolpyruvate carboxykinase (PEPCK) is an enzyme encoded by the PCK1 gene and plays a rate limiting step in gluconeogenesis occurring mainly in the liver during prolonged fasting. Biallelic deficiency of this enzyme results in a rare inborn error of metabolism disorder (OMIM # 261680). The main clinical and laboratory manifestations include fasting hypoglycemia and lactic acidosis with urinary excretion of Tricarboxylic Acid (TCA) cycles metabolites, particularly fumarate. The initial presentation varies between individuals in terms of age at initial presentation and clinical manifestations, however clinical information is lacking as it was diagnosed so far in less than 30 patients with a total of 6 different mutations which are all either missense or splice variants. We describe the first homozygous frame-shift mutation in the PCK1 gene, leading to cytosolic PEPCK deficiency. This resulted in transient hypoglycemia and acute liver failure with extreme hyperferritinemia (>40,000 ng/ml) during the first days of life. This severe very early-onset presentation that was not described earlier expands our clinical and genetic spectrum of this rare metabolic disorder
Metabolic Homeostasis is Maintained in Myocardial Hibernation by Adaptive Changes in the Transcriptome and Proteome
Vascular Endothelial Growth Factor–Induced Neovascularization Rescues Cardiac Function But Not Adverse Remodeling at Advanced Ischemic Heart Disease
Objective—
Proangiogenic therapy is a promising avenue for the treatment for chronic heart failure and a potentially powerful modality for reversing adverse cardiac remodeling. There is a concern, however, that adverse remodeling might enter an irreversible stage, and become refractory to treatments. The present study aims to determine whether neovascularization therapy is feasible at end stage heart failure and its capacity to reverse adverse cardiac remodeling during progressive disease stages.
Methods and Results—
Using a conditional transgenic mouse system for generating escalating levels of myocardium-specific vascular deficit and resultant stepwise development of heart remodeling, we show that left ventricular dilatation and fibrosis precede ventricular hypertrophy, but that interstitial fibrosis is progressive and eventually results in heart failure. Vascular endothelial growth factor–mediated neovascularization was efficient even at the end stage of disease, and rescued compromised contractile function. Remarkably, remodeling was also fully reversed by neovascularization during early and late stages. Adverse remodeling could not be rescued, however, at the end stage of the disease, thus defining a point of no return and indentifying a critical level of fibrosis as the key determinant to be considered in intended reversal.
Conclusion—
The study supports the notion of a restricted golden time for remodeling reversal but not for vascular endothelial growth factor–induced neovascularization, which is feasible even during advanced disease stages.
</jats:sec
Sinusoidal capillarization in sVEGF-R1 expressing livers without parenchymal damage.
<p>(a,b) Immunohistochemical staining for vWF (Von-Willebrand Factor) on liver sections (black arrows-sinusoids, white arrows-larger blood vessels). (c) H&E staining of liver sections showing normal appearance.</p
sVEGF-R1 expression in the adult liver causes closure of sinusoidal fenestrations.
<p>(a) Scanning electron microscopy of sinusoids in control (‘off’) showing fenestrations arranged in sieve plates (white arrows) and loss of fenestration following one month of switch ‘on’ (sVEGF-R1 expression). RBC = Red Blood Cell (b) Quantification of the percent of fenestrations' surface area in the sinusoids. sinusoidal area. ‘off’−40.5%, ‘on’−8.5%.</p
