6 research outputs found
Consumption of phenolic-rich jabuticaba (Myrciaria jaboticaba) powder ameliorates obesity-related disorders in mice
Accumulating evidence indicates that dietary phenolic compounds can prevent obesity-related disorders. We investigated whether the consumption of polyphenol-rich jabuticaba peel and seed powder (JPSP) could ameliorate the progression of diet-induced obesity in mice. Male mice were fed a control diet or a high-fat (HF) diet for 9 weeks. After this period, mice were fed control, HF or HF diets supplemented with 5 % (HF-J5), 10 % (HF-J10) or 15 % (HF-J15) of JPSP, for 4 additional weeks. Supplementation with JPSP not only attenuated HF-induced weight gain and fat accumulation but also ameliorated the pro-inflammatory response associated with obesity, as evidenced by the absence of mast cells in the visceral depot accompanied by lower IL-6 and TNF-α at the tissue and circulating levels. JPSP-supplemented mice also exhibited smaller-sized adipocytes, reduced levels of leptin and higher levels of adiponectin, concomitant with improved glucose metabolism and insulin sensitivity. The magnitude of the observed effects was dependent on JPSP concentration with HF-J10- and HF-J15-fed mice showing metabolic profiles similar to control. This study reveals that the consumption of JPSP protects against the dysfunction of the adipose tissue and metabolic disturbances in obese mice. Thus, these findings indicate the therapeutic potential of the phenolic-rich JPSP in preventing obesity-related disorders
The impact of polyphenols on chondrocyte growth and survival: a preliminary report
Background: Imbalances in the functional binding of fibroblast growth factors (FGFs) to their receptors (FGFRs) have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols.
Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R) in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth.
Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R) mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM) generation, and grade of activation of mitogen-activated protein kinases.
Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects.
Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.The authors are grateful for the constant support provided by the Hospital Universitari de Sant Joan and the Universitat Rovira i Virgili. Salvador Fernández-Arroyo is the recipient of a Sara Borrell grant (CD12/00672) from the Instituto de Salud Carlos III, Madrid, Spain. The authors also thank the Andalusian Regional Government Council of Innovation and Science for the Excellence Project P11-CTS-7625 and Generalitat Valenciana for the project PROMETEO/2012/007. This work was also supported by projects of the Fundación Areces and the Fundación MAGAR
GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations
In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems