7 research outputs found

    Evolution of naturally occurring 5' non-translated region variants of hepatitis C virus genotype 1b in selectable replicons

    Get PDF
    Quasispecies shifts are essential for the development of persistent hepatitis C virus (HCV) infection. Naturally occurring sequence variations in the 5' non-translated region (NTR) of the virus could lead to changes in protein expression levels, reflecting selective forces on the virus. The extreme 5' end of the virus' genome, containing signals essential for replication, is followed by an internal ribosomal entry site (IRES) essential for protein translation as well as replication. The 5' NTR is highly conserved and has a complex RNA secondary structure consisting of several stem-loops. This report analyses the quasispecies distribution of the 5' NTR of an HCV genotype 1b clinical isolate and found a number of sequences differing from the consensus sequence. The consensus sequence, as well as a major variant located in stem-loop IIIa of the IRES, was investigated using self-replicating HCV RNA molecules in human hepatoma cells. The stem-loop IIIa mutation, which is predicted to disrupt the stem structure, showed slightly lower translation efficiency but was severely impaired in the colony formation of selectable HCV replicons. Interestingly, during selection of colonies supporting autonomous replication, mutations emerged that restored the base pairing in the stem-loop. Recloning of these altered IRESs confirmed that these second site revertants were more efficient in colony formation. In conclusion, naturally occurring variants in the HCV 5' NTR can lead to changes in their replication ability. Furthermore, IRES quasispecies evolution was observed in vitro under the selective pressure of the replicon system

    Evolution of naturally occurring 5' non-translated region variants of hepatitis C virus genotype 1b in selectable replicons

    No full text
    Quasispecies shifts are essential for the development of persistent hepatitis C virus (HCV) infection. Naturally occurring sequence variations in the 5' non-translated region (NTR) of the virus could lead to changes in protein expression levels, reflecting selective forces on the virus. The extreme 5' end of the virus' genome, containing signals essential for replication, is followed by an internal ribosomal entry site (IRES) essential for protein translation as well as replication. The 5' NTR is highly conserved and has a complex RNA secondary structure consisting of several stem-loops. This report analyses the quasispecies distribution of the 5' NTR of an HCV genotype 1b clinical isolate and found a number of sequences differing from the consensus sequence. The consensus sequence, as well as a major variant located in stem-loop IIIa of the IRES, was investigated using self-replicating HCV RNA molecules in human hepatoma cells. The stem-loop IIIa mutation, which is predicted to disrupt the stem structure, showed slightly lower translation efficiency but was severely impaired in the colony formation of selectable HCV replicons. Interestingly, during selection of colonies supporting autonomous replication, mutations emerged that restored the base pairing in the stem-loop. Recloning of these altered IRESs confirmed that these second site revertants were more efficient in colony formation. In conclusion, naturally occurring variants in the HCV 5' NTR can lead to changes in their replication ability. Furthermore, IRES quasispecies evolution was observed in vitro under the selective pressure of the replicon system

    Case-Control Breast Cancer Study of MALDI-TOF Proteomic Mass Spectrometry Data on Serum Samples

    No full text
    We introduce mass spectrometry proteomic research for diagnosis from a clinical perspective, with special reference to early-stage breast cancer detection. The nature of SELDI and MALDI mass spectrometric measurement is discussed. We explain how the mass spectral data arising from this technology may be viewed as a new data type. Some of the properties of the data are discussed and we show how such spectra may be interpreted. Sample preprocessing for mass spectrometry is introduced and a literature review of research in clinical proteomics is presented. Finally, we provide a detailed description of the study design on the breast cancer case-control study which is investigated in this special issue.
    corecore