40 research outputs found
Effects of neonatal gonadal steroids on adult CA3 pyramidal neuron dendritic morphology and spatial memory in rats
The hippocampus is implicated in spatial cognition, which is sexually dimorphic and developmentally sensitive to gonadal steroids. Previously we have shown a sex difference in CA3 pyramidal cell layer volume and neuronal soma size that was reversible with neonatal castration in males or prenatal treatment of females with either testosterone propionate (TP) or a nonaromatizable androgen, dihydrotestosterone propionate, but not estradiol benzoate, all of which correlated with adult water maze navigation. The present study further investigates developmental androgen sensitivity of CA3 pyramidal neurons by measuring dendritic morphology and its relation to adult spatial ability. Female rats were injected with TP on postnatal day (P) 3 and P5 or ovariectomized (OVX) on P2, and male rats were castrated on P2, with or without testosterone replacement (Cas+T). Sham surgery controls were also included. Animals were tested on a water maze in adulthood, sacrificed, and CA3 pyramidal neurons were Golgi-stained and reconstructed in three dimensions using a computer-interfaced morphometry system. High-androgen groups (control males, Cas+T, TP females) performed better in spatial navigation and exhibited CA3 neurons with longer dendrites, a larger number of dendritic branches, and volumes of influence compared to low-androgen groups (control females, castrated males, OVX). Collectively, these findings indicate that the critical time period for organizational effects of androgens on the CA3 pyramidal neurons includes both prenatal and postnatal life, during which time androgens regulate developmental events such as somal growth and neuronal differentiation, all of which significantly contribute to establishing the sex difference in adult spatial navigation. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 179–190, 2003Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34483/1/10200_ftp.pd
Inhibition of cPLA2 has neuroprotective effects on motoneuron and muscle atrophy following spinal cord injury
Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cPLA2 pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy following SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, the vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham-surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment
Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. The majority of treatment strategies after SCI have concentrated on the damaged spinal cord, for example working to reduce lesion size or spread, or encouraging regrowth of severed descending axonal projections through the lesion, hoping to re-establish synaptic connectivity with caudal targets. In our work, we have focused on a novel target for treatment after SCI, surviving spinal motoneurons and their target musculature, with the hope of developing effective treatments to preserve or restore lost function following SCI. We previously demonstrated that motoneurons, and the muscles they innervate, show pronounced atrophy after SCI. Importantly, SCI-induced atrophy of motoneuron dendrites can be attenuated by treatment with gonadal hormones, testosterone and its active metabolites, estradiol and dihydrotestosterone. Similarly, SCI-induced reductions in muscle fiber cross-sectional areas can be prevented by treatment with androgens. Together, these findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be ameliorated by treatment with gonadal hormones, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system
Exercise promotes recovery after motoneuron injury via hormonal mechanisms
Injuries to spinal motoneurons manifest in a variety of forms, including damage to peripheral axons, neurodegenerative disease, or direct insult centrally. Such injuries produce a variety of negative structural and functional changes in both the directly affected and neighboring motoneurons. Exercise is a relatively simple behavioral intervention that has been demonstrated to protect against, and accelerate recovery from, these negative changes. In this article, we describe how exercise is neuroprotective for motoneurons, accelerating axon regeneration following axotomy and attenuating dendritic atrophy following the death of neighboring motoneurons. In both of these injury models, the positive effects of exercise have been found to be dependent on gonadal hormone action. Here we describe a model in which exercise, hormones, and brain-derived neurotrophic factor might all interact to produce neuroprotective effects on motoneuron structure following neural injury
Neuroprotective Effects of Exercise on the Morphology of Somatic Motoneurons Following the Death of Neighboring Motoneurons
Background. Motoneuron loss is a severe medical problem that can result in loss of motor control and eventually death. We have previously demonstrated that partial motoneuron loss can result in dendritic atrophy and functional deficits in nearby surviving motoneurons, and that treatment with androgens can be neuroprotective against this dendritic atrophy. Exercise has also been shown to be protective following a variety of neural injury models and, in some cases, is dependent on androgen action. Objective. In this study, we explored whether exercise shows the same neuroprotective effect on induced dendritic atrophy as that seen with androgen treatment. Methods. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Following saporin injections, some animals were allowed free access to a running wheel attached to their home cages. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in 3 dimensions. Results. Dendritic arbor lengths of animals allowed to exercise were significantly longer than those not allowed to exercise. Conclusions. These findings indicate that exercise following neural injury exerts a protective effect on motoneuron dendrites comparable to that seen with exogenous androgen treatment
Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. The majority of treatment strategies after SCI have concentrated on the damaged spinal cord, for example working to reduce lesion size or spread, or encouraging regrowth of severed descending axonal projections through the lesion, hoping to re-establish synaptic connectivity with caudal targets. In our work, we have focused on a novel target for treatment after SCI, surviving spinal motoneurons and their target musculature, with the hope of developing effective treatments to preserve or restore lost function following SCI. We previously demonstrated that motoneurons, and the muscles they innervate, show pronounced atrophy after SCI. Importantly, SCI-induced atrophy of motoneuron dendrites can be attenuated by treatment with gonadal hormones, testosterone and its active metabolites, estradiol and dihydrotestosterone. Similarly, SCI-induced reductions in muscle fiber cross-sectional areas can be prevented by treatment with androgens. Together, these findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be ameliorated by treatment with gonadal hormones, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system
Neuroprotective effects of testosterone metabolites and dependency on receptor action on the morphology of somatic motoneurons following the death of neighboring motoneurons
Partial depletion of spinal motoneuron populations induces dendritic atrophy in neighboring motoneurons, and treatment with testosterone is neuroprotective, attenuating induced dendritic atrophy. In this study we examined whether the protective effects of testosterone could be mediated via its androgenic or estrogenic metabolites. Furthermore, to assess whether these neuroprotective effects were mediated through steroid hormone receptors, we used receptor antagonists to attempt to prevent the neuroprotective effects of hormones after partial motoneuron depletion. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Simultaneously, some saporin-injected rats were treated with either dihydrotestosterone or estradiol, alone or in combination with their respective receptor antagonists, or left untreated. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Compared with intact normal animals, partial motoneuron depletion resulted in decreased dendritic length in remaining quadriceps motoneurons. Dendritic atrophy was attenuated with both dihydrotestosterone and estradiol treatment to a degree similar to that seen with testosterone, and attenuation of atrophy was prevented by receptor blockade. Together, these findings suggest that neuroprotective effects on motoneurons can be mediated by either androgenic or estrogenic hormones and require action via steroid hormone receptors, further supporting a role for hormones as neurotherapeutic agents in the injured nervous system