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ABSTRACT 

Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an 

important therapeutic target for neuroprotective strategies to improve recovery of function after 

SCI.  Our previous studies showed that phospholipase A2 (PLA2) may play an important role in 

the pathogenesis of SCI.  In the present study, we investigated whether blocking cPLA2 

pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 

knockout (KO) mice attenuates motoneuron atrophy following SCI.  C57BL/6 mice received 

either sham or contusive SCI at the T10 level.  At 30 min after SCI, mice were treated with ATK 

or vehicle.  Four weeks later, motoneurons innervating the vastus lateralis muscle of the 

quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic 

arbors were reconstructed in three dimensions.  Soma volume, motoneuron number, lesion 

volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, 

and motor endplate size and density.  ATK administration reduced percent lesion volume and 

increased percent volume of spared white matter compared to the vehicle-treated control 

animals.  SCI with or without ATK treatment had no effect on the number or soma volume of 

quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps 

motoneurons in untreated animals, and this decrease was completely prevented by treatment with 

ATK. Similarly, the vastus lateralis muscle weights of untreated SCI animals were smaller than 

those of sham-surgery controls, and these reductions were prevented by ATK treatment. No 

effects on fiber cross-sectional areas, motor endplate area or density were observed across 

treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated 

dendritic atrophy after SCI. These findings suggest that after SCI, cord tissue damage and 

regressive changes in motoneuron and muscle morphology can be reduced by inhibition of 

cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment. 

 

Key words: cPLA2; neuroprotection; morphology; dendrites; atrophy. 
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Abbreviations: SCI, spinal cord injury; PLA2, phospholipase A2; ATK, arachidonyl 

trifluoromethyl ketone; sPLA2, secretory PLA2; cPLA2, cytosolic PLA2; iPLA2, Ca
2+

-

independent PLA2; PFA, platelet activating factor; BHRP, horseradish peroxidase conjugated to 

the cholera toxin B subunit; ANOVA, analysis of variance 
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Introduction 

Traumatic spinal cord injuries are prevalent in the United States, where more than 11,000 people 

per year survive a spinal cord injury (SCI).  Of these, around 45% suffer from spinal motoneuron 

lesions, and this number rises to around 95% for those with lumbar or sacral injuries 
1
. The 

pathophysiology of SCI involves both immediate and secondary effects.  After the initial trauma, 

a protracted period of progressive damage occurs, causing spreading of the lesion and further 

segmental destruction.  A variety of mechanisms contribute to this progressive secondary injury, 

including excitotoxicity 
2
, free radical generation 

3
, and inflammation 

4
, resulting in the death of 

motoneurons, interneurons, and glial cells at the lesion site.  Caudal to the lesion, surviving 

motoneurons respond to injury with marked dendritic retraction 
5
.  This secondary dendritic 

atrophy is likely responsible for at least some of the movement deficits and reduces the 

excitability of the remaining motoneurons 
6
.  The target musculature of these motoneurons is 

also affected, with reductions in weight and fiber cross-sectional fiber diameter 
5
. 

Given that we currently lack the technology to replace dead motoneurons, developing the 

ability to protect motoneurons from injury-induced cell death and/or surviving motoneurons 

from secondary atrophy is an important goal.  Our previous studies suggest that activation of 

phospholipase A2 (PLA2) may play an important role in mediating the secondary effects of SCI 
7, 

8
.  The hydrolysis of membrane phospholipids by PLA2 is a rate-limiting step for generation of 

pro-inflammatory mediators such as eicosanoids and platelet activating factor (PAF) 
9-11

.  The 

eicosanoids and PAF are well-known mediators of inflammation and tissue injury and have been 

implicated in pathological states of numerous acute and chronic neurological disorders 
9, 10, 12

.  

SCI significantly increased total PLA2 activation and expression of cPLA2 
8
.  Furthermore, 

expression of phosphorylated cPLA2, a marker for cPLA2 activation, was increased post-injury in 
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injured axons, glial cells, and neurons 
13

. Administration of exogenous PLA2 or melittin, a potent 

activator of endogenous PLA2, resulted in cultured spinal neuronal death in a dose-dependent 

manner 
8
.  Importantly, such PLA2- or melittin-mediated neuronal death could be significantly 

reversed by inhibiting PLA2 
7, 8

, and inhibition of PLA2 improved behavioral recovery after SCI 

in mice 
13

.  Thus, blocking PLA2 activation may represent a novel strategy to reduce multiple 

damaging processes in the course of secondary SCI that leads to motoneuron atrophy. 

To date, more than 27 isoforms of PLA2 have been found in the mammalian system which 

can be classified into three major categories: secretory PLA2 (sPLA2), cytosolic PLA2 (cPLA2) 

and Ca
2+

-independent PLA2 (iPLA2) 
11, 14

. Of these, cPLA2 is the most important PLA2 isozyme, 

and has been implicated as an effector in receptor-mediated release of arachidonic acid (AA) and 

exhibits strong preference for deacylation of AA over other fatty acids 
9, 15

. Because cPLA2 

activation mediates Sema3A-induced growth cone collapse 
16, 17

, it is possible that cPLA2 

activation is involved in dendritic atrophy after SCI. However, no studies to date have examined 

whether cPLA2 has a role in motoneuron atrophy. In this study, we investigated the effects of 

cPLA2 inhibition on spinal motoneurons and their target musculature after SCI. 

 

Materials and methods 

Female C57BL/6 mice (12 weeks) were purchased from Jackson Laboratories (Bar Harbor, 

ME).  Female cPLA2
-/-

 mice and wild-type (WT) littermates (12 weeks) generated from 

heterozygous breeding pairs at Indiana University School of Medicine Laboratory Animal 

Resource Center were used in this study. The mice were maintained on a 12:12 light/dark cycle 

with food and water freely available. A total of 38 animals were used for the study and they were 

divided into 5 groups: sham-operated (n = 6), SCI (n = 8), SCI+ATK (n =8), wild-type SCI (n 
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=8) and cPLA2 KO SCI (n = 8). All surgical interventions and postoperative animal care were 

performed in accordance with the Guide for the Care and Use of Laboratory Animals (National 

Research Council) and were approved by the Indiana University Institutional Animal Care and 

Use Committee. 

 

Spinal cord contusion and treatment  

Mice were anesthetized by an intraperitoneal injection of 2.5% Avertin (2,2,2-tribromo-

ethanol, 0.15ml/10g body weight, Sigma, St Louis, MO).  A T10 laminectomy was performed to 

expose the underlying thoracic spinal cord segment(s), and animals received a (60 kDyne) 

contusion injury using an Infinity Horizon (IH) impactor.  Spinal cord injury at the T10 vertebra 

(T12-13 spinal cord) 
18

 was intended to preserve central pattern generators at L1-2 required for 

locomotor function, and the relevant motoneurons for our analysis.  Sham control animals 

received laminectomy only. After injury, the muscles and skin were closed in layers, and animals 

were placed in a temperature- and humidity-controlled chamber overnight. Manual bladder 

expression was carried out at least 3 times daily until reflex bladder emptying was established. 

Following contusion injury, mice were treated with a potent and selective slow binding 

inhibitor of cPLA2, arachidonyl trifluoromethyl ketone (ATK) 
19

.  ATK (Cayman Chemicals, 

Ann Arbor MI) was injected intravenously (50 μl of 4 mM) at 30 min after injury; mice received 

additional ATK injections administered intraperitoneally (200 μl of 4 mM) on every other day up 

to 2 weeks post-injury; another group of SCI animals received vehicle injections.  The dose and 

treatment regimen were selected based on our previous publication
13

 and a previous published 

report
20

. Animals were allowed to survive for 4 weeks following SCI, a length of time sufficient 
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to observe induced effects on motoneuron morphology 
6, 21-23

.  An additional group of age-

matched, sham-injured (laminectomy only) females served as normal controls. 

 

Injection of horseradish peroxidase conjugated to cholera toxin B subunit 

Four weeks after injury, animals were re-anesthetized, and the left vastus lateralis muscle of 

the quadriceps was exposed and injected with horseradish peroxidase conjugated to the cholera 

toxin B subunit (BHRP; 0.5 µl, 0.2%; List Biological, Inc.).  BHRP labeling permits population-

level quantitative analysis of motoneuron somal and dendritic morphologies 
24, 25

.  Forty-eight 

hours after BHRP injection, a period that ensures optimal labeling of motoneurons 
24, 25

, animals 

were weighed and received a lethal dose of Nembutal (60 mg/kg, i.p.), and were then perfused 

intracardially with saline followed by cold fixative (1% paraformaldehyde/1.25% 

glutaraldehyde). 

 

Tissue processing, histology, and lesion assessments 

A 12 mm thoracic spinal cord segment including the lesion was removed, postfixed overnight 

in the same fixative as used for perfusion, and transferred to sucrose phosphate buffer (30% w/v, 

pH 7.4).  Thoracic segments were then embedded in gelatin, frozen, and sectioned transversely at 

40 µm; alternate sections were collected into two series, and mounted on gelatin-coated slides.  

One series was stained with cresyl violet and eosin for assessing lesion and spared tissue volume.  

The cross-sectional areas of lesion or spared white and gray matter for each animal were 

measured in sections located 240 µm apart and spanning the entire rostrocaudal extent of the 

lesion using a video-based morphometry system (Stereo Investigator; MBF Bioscience, 

Williston, VT) at a final magnification of 202X.  An unbiased estimation of the percentage of 
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spared tissue was calculated using the Cavalieri method 
26

.  The total volume of spared white and 

gray matter was calculated by summing their individual subvolumes 
27

.  Individual subvolumes 

of spared tissue were calculated by multiplying the cross-sectional area A x d, where d represents 

the distance between sections (240 µm).  The percent total volume of spared white and gray 

matter was calculated by dividing the total volume of spared white and gray matter by the total 

tissue volume of the corresponding region (x100), respectively.  Estimation of total and percent 

total lesion volume was determined using identical procedures.  The remaining series of thoracic 

sections were stained for myelin using Luxol fast blue as described previously 
7
.  The lesion area 

and total spinal cord area were outlined from a section through the lesion epicenter and sections 

located either 240 µm rostral or caudal to the epicenter using Stereo Investigator.  The percent 

lesion area was determined by dividing the lesion area by the spinal cord area from the same 

section. 

 

Motoneuron morphology and quantification 

The vastus lateralis muscle is innervated by motoneurons located in column 3 of the lateral 

motor column in the L2 spinal segment 
28-30

.  Following perfusion, the lumbar portion of the 

spinal cord of each animal was removed, postfixed for 5 hours in the same fixative as used for 

perfusion, and then transferred to sucrose phosphate buffer (10% w/v, pH 7.4) overnight for 

cryoprotection.  Spinal cords were then embedded in gelatin, frozen, and sectioned transversely 

at 40 µm; all sections were collected into 4 alternate series.  One series was stained with thionin 

for use in cell counts.  For visualization of BHRP, the 3 remaining series were immediately 

reacted using a modified tetramethyl benzidine protocol 
5
, mounted on gelatin-coated slides, and 

counterstained with thionin. 
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Motoneurons innervating the quadriceps muscles do not form a discrete nucleus, but instead 

are contained within the large continuous populations of motoneurons located within the lateral 

motor column.  Thus, to identify the appropriate area within the lateral motor column for 

motoneuron counts in the unreacted series, we used a method similar to that of Little et al. 
6
.  

Briefly, for each animal the range of sections in which motoneurons labeled with BHRP after 

injection into the vastus lateralis muscle were present in the reacted series was identified, and 

then motoneuron counts were performed in the appropriate matching sections in the unreacted 

series.  For each animal, estimates of the total number of motoneurons in the left and right lateral 

motor columns were obtained using the optical disector method previously described 
6
.  Counts 

were made at 937.5X under brightfield illumination.  Motoneurons are easily recognizable as 

large, darkly staining, multipolar cells.  A counting frame (110 m X 80 m) was moved 

systematically throughout an area of each ventral horn (approximately 350 m X 350 m, 

defined by the actual distribution of BHRP-labeled somata from all of the animals used in the 

study) in each section within the identified range.  Only motoneurons in which there was a clear 

nucleus and nucleolus were counted, provided they did not contact the forbidden lines of the 

counting frame; motoneuron nucleoli were counted as they appeared while focusing through the 

z axis, and nucleoli in the first focal plane (i.e., "tops") were excluded to avoid double counting. 

Motoneuron counts were derived from a mean of 5.33 sections spaced 480 µm apart and 

distributed uniformly through the entire rostrocaudal extent of the quadriceps motoneuron pool 

range.  Cell counts for each animal were corrected for the proportion of sections sampled. 

Using similar methods, the number of BHRP-labeled motoneurons was assessed in all 

sections of the reacted series through the entire rostrocaudal extent of their distribution for all 

animals.  Counts of labeled quadriceps motoneurons were made under brightfield illumination, 
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10 

 

 

where somata could be visualized and cytoplasmic inclusion of BHRP reaction product 

confirmed. 

 

Soma volume  

The volume of quadriceps motoneuron somata was assessed in at least one set of alternate 

sections (160 µm apart) using the Nucleator method 
31

. A set of 4 rays emanating from a point 

randomly chosen within each BHRP-labeled motoneuron soma was drawn and oriented 

randomly.  Soma volumes of an average of 28.1 motoneurons were measured for each animal 

using Stereo Investigator at a final magnification of 780X.  Soma volumes within each animal 

were then averaged for statistical analysis. 

 

Dendritic length 

For each animal, dendritic lengths in a single representative set of alternate sections were 

measured under darkfield illumination.  Beginning with the first section in which BHRP-labeled 

fibers were present, labeling through the entire rostrocaudal extent of the quadriceps motoneuron 

dendritic field was assessed in every third section (480 µm apart) in three dimensions using a 

computer-based morphometry system (Neurolucida; MBF Bioscience, Williston, VT) at a final 

magnification of 250X.  Average dendritic length per labeled motoneuron was estimated by 

summing the measured dendritic lengths of the series of sections, multiplying by three to correct 

for sampling, then dividing by the total number of labeled motoneurons in that series.  This 

method does not attempt to assess the actual total dendritic length of labeled motoneurons 
32

, but 

has been shown to be a sensitive and reliable indicator of changes in dendritic morphology in 
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normal development 
24, 33, 34

, after changes in dendritic interactions 
33

 and afferent input 
35-37

, and 

after injury 
6, 21-23, 38

. 

 

Dendritic distribution 

To assess potential redistributions of dendrites across treatment groups, for each animal the 

composite dendritic arbor created in the length analysis was divided using a set of axes oriented 

radially around the center of the collective labeled somata.  These axes divided the spinal cord 

into 12 bins of 30° each.  The portion of each animal’s dendritic arbor per labeled motoneuron 

contained within each location was then determined.  This method provides a sensitive measure 

of dendritic redistribution in response to changes in dendritic interactions 
33

 and afferent input 
35, 

36
. 

 

Dendritic extent 

The comparability of BHRP labeling across groups was assessed by quantifying both the 

rostrocaudal and the radial extent of quadriceps motoneuron dendritic arbors.  The rostrocaudal 

extent of the dendritic arbor was determined by recording the rostrocaudal distance spanned by 

quadriceps motoneuron dendrites for each animal.  The maximal radial extent of the arbor in the 

transverse plane was also measured for each animal, using a set of axes oriented radially around 

the center of the collective labeled somata.  These axes divided the spinal cord into 12 bins of 

30° each.  For each bin, the linear distance between the center of the quadriceps motor pool and 

the most distal BHRP-filled process was measured.  Radial dendritic extent is independent of 

overall dendritic length and reflects the maximal linear distance (in the transverse plane) of 

BHRP transport to the most distal dendritic processes. 
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Muscle fiber and motor endplate morphology 

The right vastus lateralis muscles were removed immediately after perfusion and weighed.  

Muscles were then postfixed overnight in the same fixative as used for perfusion, and then 

transferred to sucrose phosphate buffer (10% w/v, pH 7.4).  Muscles were then rinsed in distilled 

water, blocked into proximal and distal segments, and flash-frozen in 2-methylbutane.  Muscle 

segments were then sectioned (45 µm) either transversely (for examination of muscle fiber cross-

sectional area) or longitudinally (for examination of motor endplate area and density) on a 

cryostat at -20° C and thaw-mounted onto glass slides.  Muscle fiber cross-sectional area was 

assessed after staining with Milligan’s trichrome stain.  Motor endplate size and density were 

assessed after staining for acetylcholinesterase using the Roots-Karnovsky method 
39

.  Cross-

sectional muscle fiber area and motor endplate size were measured under brightfield illumination 

using Stereo Investigator.  To obtain accurate measures of motor endplate size, only en face 

profiles were traced.  An average of 32.5 muscle fibers and 30.0 endplates were measured for 

each animal at a final magnification of 510X.  The number of motor endplates per muscle fiber 

was estimated by counting the number of muscle fibers and endplates in a grid (1 mm X 1 mm), 

randomly placed on the muscle section (1 sample field per section, 5 muscle sections per 

animal).  An average of 139.8 muscle fibers per animal was examined.  Fiber and endplate areas 

within each animal were then averaged for statistical analysis. 

 

Statistical analysis 

All data are presented as mean ± SEM and were analyzed by t-tests or analyses of variance 

(one way, two way, or repeated measures as appropriate) followed by post hoc analyses using 
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Fisher’s least significant difference (LSD).  Digital light micrographs were obtained using an 

MDS 290 digital camera system (Eastman Kodak Company, Rochester, NY).  Brightness and 

contrast of these images were adjusted in Adobe Photoshop (Adobe Systems, San Jose, CA). 

 

Results 

 

Lesion volume and white matter sparing 

Contusive SCI resulted in large lesion with thin rims of spared tissue (Fig. 1A-B).  In both 

SCI groups, faint staining with Luxol Fast Blue indicated that contusion injury resulted in areas 

of demyelination immediately surrounding the lesion.  Measurements of the percent lesion area 

in Luxol Fast Blue-stained sections indicated that treatment with ATK had no effect on the 

percent lesion area at the injury epicenter, with the lesion occupying an average of 81.68% of the 

total cord area [t(12) = -0.652, ns; Fig. 1C].  In contrast, lesion volumes in vehicle-treated 

animals (1.38 ± 0.22 mm
3
; Mean ± SEM) were significantly larger than those of ATK-treated 

animals [0.86 ± 0.08 mm
3
; F(1,12) = 6.25;  p<0.03; Fig. 1D].  To correct for changes in spinal cord 

contour after spinal cord contusion, the percent lesion volume was also determined.  As for total 

lesion volume, ATK treatment had a significant effect on percent lesion volume (SCI+vehicle, 

13.48 ± 2.52%; SCI+ATK, 8.20 ± 1.07%) and percent volume of spared white matter 

(SCI+vehicle, 50.70 ± 1.22%; SCI+ATK, 54.48 ± 0.86%); percent volume of spared gray matter 

[SCI+vehicle, 35.81 ± 1.43%; SCI+ATK, 37.32 ± 0.65%; F(1, 24) = 4.31, p<0.03; Fig. 1E].  

Importantly, despite the large size of the lesions, they did not extend into the L2 level, and thus 

did not compromise the quadriceps motoneuron populations directly. 

 

 Page 13 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



14 

 

 

Motoneuron counts 

In sham animals, the number of motoneurons within the identified quadriceps range averaged 

727.50 (± 100.09).  Contusive SCI with or without ATK treatment had no effect on the number 

of quadriceps motoneurons [SCI+vehicle, 668.00 ± 72.11; SCI+ATK, 708.00 ± 108.43; [F(2, 19) = 

0.09, ns]. 

 

Motoneuron morphometry 

Injection of BHRP into the left vastus lateralis successfully labeled ipsilateral quadriceps 

motoneurons in all groups (Fig. 2).  Labeled motoneurons were located in the lateral motor 

column in the L2 spinal segment (Nicolopoulos-Stournaras and Iles, 1983, Little et al., 2009).  

Dendritic arbors were strictly unilateral, with extensive ramification along the ventrolateral edges 

of the gray matter and in the lateral funiculus, as well as throughout the ventral horn.  An average 

of 73.92 ± 6.60 motoneurons per animal were labeled with BHRP, and did not differ by group 

[F(2,18) = 0.24, ns]. 

 

Soma volume 

In sham animals, quadriceps motoneuron somata were typical in size (12,539.46 ± 644.53 

μm
3
, and did not differ from those of SCI+vehicle (12,561.79 ± 378.75 μm

3
) or SCI+ATK 

animals [11,926.33 ± 690.53 μm
3
; F(2,19) = 0.35, ns]. 

 

Dendritic length   

Following contusion injury, quadriceps motoneurons underwent marked dendritic atrophy.  

Dendritic length decreased by 28.3% [2870.71 ± 215.17 µm in SCI+vehicle animals compared to 
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4002.23 ± 193.64 µm for sham animals, LSD, p < .05; overall test for the effect of group on 

arbor per cell F(2,18) = 3.68, p < .05; Fig. 3A].  However, treatment with ATK attenuated SCI-

induced dendritic atrophy: dendritic lengths in SCI+ATK animals (4210.34 ± 550.30 μm) were 

46.7% longer than those of SCI+vehicle animals (LSD p < .03), and did not differ from those of 

sham animals (LSD, ns) [Fig. 3A]. 

Dendritic length per bin was nonuniform across radial bins, and a repeated-measures 

ANOVA revealed a significant effect of radial location [F(11,198) = 21.76, p < .0001; Fig. 3B].  

Consistent with the results of the arbor per cell analysis, there was also a significant effect of 

group [F(2,198) = 3.58, p < .05].  Reductions in dendritic length occurred throughout the radial 

distribution in SCI+vehicle animals compared to sham animals [an average of 23.6%, 0° to 300°; 

F(1,132) = 15.64, p < .01], with the largest reduction occurring ventromedially (300° to 360°; 

38.9%); however, the group x location interaction did not reach significance [F(11,132) = 1.67, p = 

.086].  Treatment with ATK attenuated SCI-induced reductions in dendritic length per bin 

throughout the radial distribution and there were no group differences [F(1,143) = 0.14, ns] and no 

group x location interaction [F(11,143) = 0.69, ns] between SCI+ATK animals and sham animals.  

Dendritic lengths per bin in SCI+ATK animals were longer than those of SCI+vehicle animals 

throughout the radial distribution [F(1,121) = 4.44, p < .05]; there was no group x location 

interaction [F(11,121) = 0.70, ns]. 

To definitively determine the role of cPLA2 in dendritic atrophy after SCI, we used cPLA2
-/- 

mice and compared them with WT littermates (cPLA2
+/+

). Dendritic length decreased by 24.61% 

(3017.13 ± 361.67 μm in WT SCI animals compared to 4002.23 ± 193.64 μm in sham animals. 

cPLA2 deletion attenuated SCI-induced dendritic atrophy: dendritic lengths in cPLA2 KO mice 

were 3766.44 ± 325.74 μm, which were 24.84% longer than those of WT animals. These 
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differences in dendritic lengths across groups approached statistical significance [F(2,21)= 2.89, 

p = .077; Fig. 3D]. 

Dendritic length per bin was non-uniform across radial bins, and a repeated measures 

ANOVA revealed a significant effect of radial location [F(11,231) = 27.49, p < .05; Fig. 3E]. 

Consistent with the results of the arbor per cell analysis, the effect of group was significant 

[F(2,231) = 4.95, p < .05], with reductions in dendritic length occurring throughout the radial 

distribution in WT SCI animals compared to sham animals (an average of 22.15%); there was no 

significant group x location interaction [F(22,231) = 1.07, ns]. cPLA2 deletion attenuated SCI-

induced reductions in dendritic length per bin, and there were no group differences [F(1,154) = 

1.32, ns] and no group x location interaction [F(1,154) = .42, ns] between SCI cPLA2 KO 

animals and sham animals. Dendritic lengths per bin in cPLA2 KO animals were longer than 

those of WT animals after SCI throughout the radial distribution, an average of 35.53%, but this 

difference failed to reach statistical significance [F(1,154)= 3.30, p = .09]. There was no group x 

location interaction [F(11,154) = 1.03, ns]. 

 

Dendritic extent  

Consistent with the nonuniform dendritic distribution of quadriceps motoneurons apparent in 

Figure 2, radial dendritic extent differed across bins (Fig. 3C), and repeated-measures ANOVA 

revealed a significant effect of location [F(11,198) = 40.39, p < .0001].  However, radial dendritic 

extent did not differ across groups [F(2,198) = 3.26, ns].  Rostrocaudal dendritic extent also did not 

differ across groups [F(2,18) = 1.11, ns], spanning 3220.00 ± 231.15 µm in sham animals, 2853.33 

± 186.67 µm in SCI+vehicle animals, and 2811.43 ± 223.17 µm in SCI+ATK animals. In cPLA2 

KO mice, consistent with the non-uniform dendritic distribution of quadriceps motoneurons, 

radial dendritic extent differed across bins, and repeated-measures ANOVA revealed a 
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significant effect of location [F(11,231) = 62.26, p < .05; Fig. 3F]. However, radial dendritic extent 

did not differ across groups [F(2,231) = 3.14, ns; Fig. 3F]. Rostrocaudal dendritic extent also did 

not differ across groups [F(2,21) = 1.97, ns], spanning 3220.00 ± 231.15 μm in sham animals, 

2680.00 ± 156.39 μm in SCI WT animals, and 2740.00 ± 235.07 μm in  cPLA2 KO SCI animals. 

 

 

Muscle weight and fiber size 

Overall body weight was not affected: animals weighed an average of 19.96 ± 0.38 g at the 

end of treatment, and this did not differ between groups [F(2,19) = 2.44, ns].  However, muscle 

weights were affected by contusion injury (Fig. 4B).  Weights of the vastus lateralis muscles 

decreased by 28.2% (0.05 ± 0.003 g in SCI+vehicle animals compared to 0.071 ± 0.002 g for 

sham animals, LSD, p < .0001; overall test for the effect of group on muscle weight F(2,19) = 

17.81, p < .0001].  However, treatment with ATK attenuated SCI-induced muscle atrophy: 

weights of the vastus lateralis muscles in SCI+ATK animals (0.067 ± 0.002 g) were 31.4% larger 

than those of SCI+vehicle animals (LSD p < .0001), and did not differ from those of sham 

animals (LSD, ns). 

Muscle fiber size was also affected by contusion injury (Fig. 4C).  Cross-sectional area of 

vastus lateralis muscle fibers decreased by 26.6% (454.53 ± 51.63 µm
2
 in SCI+vehicle animals 

compared to 619.28 ± 47.72 µm
2
 for sham animals, LSD, p < .05; overall test for the effect of 

group on muscle fiber area [F(2,18) = 5.56, p < .05].  However, treatment with ATK failed to 

attenuate SCI-induced muscle fiber size: cross-sectional areas of vastus lateralis muscle fibers in 

SCI+ATK animals (475.50 ± 10.38 µm
2
) were not different from those of SCI+vehicle animals 

(LSD, ns), and were 23.2% smaller than those of sham animals (LSD, p < .05). 
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Motor endplate size and density 

Contusion injury with or without ATK treatment had no significant effects on motor endplate 

size.  In sham animals, motor endplate areas were typical in size (1147.92 ± 36.71 μm
2
), and did 

not differ from those of SCI+vehicle (1092.02 ± 50.40 μm
2
) or SCI+ATK animals [1083.69 ± 

36.57 μm
2
; F(2,19) = 0.80, ns; Fig. 5B]. Similarly, the density of motor endplates did not differ 

across groups [sham animals, 0.55 ± 0.04 endplates per fiber; SCI+vehicle animals, 0.60 ± 0.05 

endplates per fiber, SCI+ATK animals 0.51 ± 0.04 endplates per fiber; F(2,18) = 1.44, ns; Fig. 5C]. 

 

Discussion 

In this study, we found that ATK treatment can completely prevent pronounced dendritic 

atrophy in spinal motoneurons caudal to a contusive SCI, indicating a protective role of cPLA2 

inhibition on prevention of motoneuron dendritic degeneration after SCI. Genetic deletion of 

cPLA2 significantly reduced dendritic atrophy after SCI.  It should be noted that after SCI, 

motoneurons caudal to the injury are morphologically intact and are not directly traumatized by 

the injury. Inhibition of cPLA2 also prevented decreases in the weights of the target musculature.  

To our knowledge, this is the first study demonstrating a neuroprotective effect of cPLA2 

inhibition on motoneuron dendritic degenerative change and muscle morphology following SCI. 

Such injury induced secondary effect on motoneurons and associated musculature remote to the 

injury itself may provide new targets for therapeutical interventions aimed at enhancing recovery 

of functional after SCI.   

 

 cPLA2 inhibition as a neuroprotective strategy 

 Page 18 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



19 

 

 

Mouse SCI models are being increasingly used because transgenic and knockout mice are 

available for the study of cellular mechanisms.  Certain mouse strains, such as C57BL/6, 129/Sv, 

and B10.rIII, have a naturally occurring null mutation of the major form of sPLA2 
40

. Therefore, 

C57BL/6 mice in this study were deficient in sPLA2. ATK is a potent and selective inhibitor of 

cPLA2. This inhibitor shows slow tight binding to cPLA2 in the presence of Ca
2+

 and forms a 

covalent bond with a serine residue in the active site of the enzyme 
19, 41

.  This inhibitor is about 

500-fold more potent at inhibiting cPLA2 than sPLA2 
19

 and may also be a weak inhibitor of 

iPLA2 
42-44

. 

Following contusion, the focal injuries delivered to the spinal cord developed into large 

lesions that spanned multiple thoracic spinal segments. Such lesions were significantly reduced 

by ATK treatment.  Notably, the cPLA2 inhibitor was administered after trauma, modeling a 

clinically relevant situation.  These findings are in agreement with our previous studies that 

inhibition of PLA2 reduced tissue damage and increased spared white matter after SCI 
7, 13

.  

Several other studies also reported a detrimental effect of cPLA2 in other CNS diseases such as 

ischemia 
45, 46

, experimental autoimmune encephalomyelitis 
20, 47

 and Alzheimer’s disease 
48

. 

Our previous studies showed that SCI significantly induced cPLA2 activation, which was 

observed as early as 8 h post-injury and peaked at 7 d post-injury. The activated cPLA2 was 

mainly localized in neurons and oligodendrocytes. It has also been shown that arachidonic acid 

(AA) and eicosanoids, downstream metabolites of cPLA2, increased as early as 30 min after SCI 

49, 50
. The increased eicosanoids were persistent for at least 3 d (the longest time point studied) 

after SCI 
51

. In addition, concentrations of free fatty acid quickly increased after SCI, peaked at 3 

d, and remained significantly high at 7 d after SCI 
52

. Since the induction profiles of these PLA2 

metabolites are similar to that of cPLA2 after SCI, a prolonged effect of cPLA2 after SCI exists, 
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suggesting that there might be a unique “therapeutic window” for intervention. Although cPLA2 

inhibitor in the present study was administered for two weeks after trauma, the optimal 

therapeutic time window for such treatment remains to be determined. 

 

Changes in motoneuron morphology are not direct effects of lesion 

Although extensive, spinal lesions did not extend into the lumbar spinal cord, thus sparing 

the gray matter and resident motoneurons. Counts of either Nissl-stained or BHRP-labeled 

motoneurons in SCI animals did not differ from those of sham animals, confirming that 

quadriceps motoneurons were not directly damaged by the initial trauma or secondary 

degeneration occurred at the lesion site.  Similarly, soma size of quadriceps motoneurons was not 

significantly affected by the SCI, further suggesting that the quadriceps motoneurons were not 

directly damaged by the SCI 
5
.  

 

Dendritic atrophy after SCI 

Afferent input to motoneurons is important for the maintenance of dendritic morphology, 

and deafferentation often results in dendritic retraction. Following deafferentation via damage to 

the dorsal horn 
53

, spinal cord hemisection or transection 
35, 54

, or cortical ablation 
55

, spinal 

motoneurons undergo dendritic atrophy. Activity in afferent pathways is an important factor in 

maintaining dendritic morphology. For example, cold block of the spinal cord causes dendritic 

morphological changes to develop within 4 hours 
56

. We have previously reported that following 

SCI and the concomitant loss of descending pathways, spinal motoneurons caudal to the lesion 

undergo marked reductions in their dendritic arbor, especially ventromedially in areas where 

both the reticulospinal and propriospinal projections terminate 
5
.  In the present study, we 
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observed reductions throughout the arbor, but again the reductions were greatest in the 

ventromedial portion of the dendritic distribution. This loss is of particular significance after 

SCI, as descending reticulospinal fibers course through the ventral and lateral funiculi 
57, 58

, and 

disruption of these tracts results in hindlimb motor deficits 
59, 60

. Therefore, it is possible that the 

dendritic atrophy we observed following SCI in untreated animals could reflect deafferentation 

resulting from the loss of descending motor and propriospinal tracts. 

 

Inhibition of cPLA2 attenuates SCI-induced motoneuron dendritic atrophy 

SCI-induced atrophy of quadriceps motoneuron dendrites was attenuated in ATK-treated 

animals. Genetic deletion of cPLA2 also resulted in neuroprotection on dendritic atrophy after 

SCI. However, mechanisms of cPLA2 inhibition-mediated motoneuron atrophy remain unclear. 

One possibility is that ATK treatment could have attenuated dendritic atrophy by increasing the 

number of spared axons that traverse the lesion, which is consistent with the reduction in lesion 

size and corresponding increase in white matter sparing. The other possibility is that cPLA2 may 

have a direct effect on dendrites.  Such a direct effect is supported by other reports that cPLA2 

activation mediates Sema3A-induced growth cone collapse 
16, 17

, suggesting that cPLA2 

activation could be directly involved in dendritic retraction after SCI. The attenuation in 

dendritic atrophy we observed in ATK-treated animals could potentially maintain motor 

activation and account for the protective effects of ATK on locomotor function we have 

observed 
13

.  Such an effect would lead to protection of the target musculature from disuse 

atrophy and could support exercise training effects on locomotor function after SCI 
61, 62

. 

 

Comparability of BHRP labeling 

 Page 21 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



22 

 

 

We believe that the differences we observed across treatment groups reflect true dendritic 

atrophy in quadriceps motoneurons of untreated SCI animals, which is attenuated by treatment 

with ATK.  However, the possibility that confounding changes arising from SCI could affect 

retrograde transport is an important consideration, as such an artifact could potentially result in 

apparent alterations in dendritic morphology.  However, no differences in either radial or 

rostrocaudal extents of quadriceps motoneuron dendrites in the SCI groups compared to normal 

values were observed.  Therefore, we believe that the dendritic labeling across groups was 

comparable and that the shorter dendritic lengths we observed in the untreated SCI animals 

reflect true dendritic atrophy. 

 

Muscle atrophy after SCI 

The regressive changes we observed in muscle weight and fiber diameter are typical after 

SCI in muscles innervated by motoneurons below the level of the lesion, especially in weight-

bearing muscles such as the quadriceps 
63, 64

. This atrophy can result from either denervation due 

to loss of motoneurons or damage to the ventral roots, or disuse consequent to decreases in 

muscle activation potentially due to the loss of synaptic input to remaining motoneurons 
65

. In 

the current study, the atrophy we observed cannot be ascribed to an effect of denervation, as we 

observed no changes in quadriceps motoneuron number, the number of BHRP-labeled 

quadriceps motoneurons, or the sizes or densities of motor endplates between sham animals and 

untreated SCI animals. Thus, the decreased weight and fiber size we observed most likely reflect 

a disuse atrophy, potentially resulting after damage to descending and propriospinal projections 

and/or the reductions in quadriceps motoneuron dendritic length we observed. Such reductions in 

quadriceps motoneuron dendritic length result in attenuation of motor activation, reducing 
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response amplitudes in the femoral nerve generated by dorsal root afferent stimulation 
6
. 

Alternatively, disuse atrophy may also result from changes in muscle length or loading 

conditions that could decrease protein synthesis and increase protein degradation 
66, 67

. 

 

Protection of muscle with ATK 

In the current study, ATK treatment prevented the atrophy in muscle weight seen after SCI. 

However, there is no significant difference in muscle fiber area between the SCI and SCI + ATK 

treatment group. The reason for the reversal of muscle weight loss without changing of muscle 

fiber size is unclear.  The protection of muscle weight could be the result of a sparing of 

motoneuron function. As described above, ATK treatment can reverse the regressive changes in 

dendritic morphology and motor activation. Thus, the protection from dendritic atrophy with 

ATK treatment after SCI could have spared local spinal circuitry sufficiently to maintain motor 

activation and use leg more for walking, preventing disuse atrophy of the target muscles. 

 

 

Conclusions 

The present results indicate that the regressive changes in motoneuron and muscle 

morphology seen after SCI can be prevented by blocking cPLA2 pharmacologically at 30 min 

post-injury or genetically deleting cPLA2 in mice, potentially providing a mechanism for the 

improved locomotor performance previously observed with cPLA2 inhibitor treatments 

following SCI. Together, these results further support a role for cPLA2 as a therapeutic target for 

treatment of SCI. 

 

 Page 23 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



24 

 

 

Acknowledgements 

This work was supported by NIH NS052290, NS052290-06S1, NS050243, NS059622, Indiana 

Spinal Cord and Brain Injury Research Foundation and Mari Hulman George Endowment Funds 

(XMX), the Indiana Clinical and Translational Sciences Institute funded, in part by Grant 

Number RR025761 from the National Institutes of Health, National Center for Research 

Resources, Clinical and Translational Sciences Award (XMX, DRS), and by the State of Indiana 

(ISDH, Grant # A70-2-079609, A70-9-079138 and A70-5-0791033; NKL).  

 

Author Disclosure Statement 

No competing financial interests exist. 

 

 Page 24 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



25 

 

 

References 

1. Doherty, J.G., Burns, A.S., O'Ferrall, D.M. and Ditunno, J.F., Jr. (2002). Prevalence of upper motor 

neuron vs lower motor neuron lesions in complete lower thoracic and lumbar spinal cord injuries. J 

Spinal Cord Med 25, 289-292. 

2. Liu, D., Thangnipon, W. and McAdoo, D.J. (1991). Excitatory amino acids rise to toxic levels upon 

impact injury to the rat spinal cord. Brain Res 547, 344-348. 

3. Diaz-Ruiz, A., Ibarra, A., Perez-Severiano, F., Guizar-Sahagun, G., Grijalva, I. and Rios, C. (2002). 

Constitutive and inducible nitric oxide synthase activities after spinal cord contusion in rats. Neurosci 

Lett 319, 129-132. 

4. Ritz, M.F. and Hausmann, O.N. (2008). Effect of 17beta-estradiol on functional outcome, release of 

cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats. Brain 

Res 1203, 177-188. 

5. Byers, J.S., Huguenard, A.L., Kuruppu, D., Liu, N.K., Xu, X.M. and Sengelaub, D.R. (2012). 

Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord 

injury. J Comp Neurol 520, 2683-2696. 

6. Little, C.M., Coons, K.D. and Sengelaub, D.R. (2009). Neuroprotective effects of testosterone on the 

morphology and function of somatic motoneurons following the death of neighboring motoneurons. J 

Comp Neurol 512, 359-372. 

7. Liu, N.K., Zhang, Y.P., Han, S., Pei, J., Xu, L.Y., Lu, P.H., Shields, C.B. and Xu, X.M. (2007). 

Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase 

A2 activation in adult rats following spinal cord injury. J Neuropathol Exp Neurol 66, 932-943. 

8. Liu, N.K., Zhang, Y.P., Titsworth, W.L., Jiang, X., Han, S., Lu, P.H., Shields, C.B. and Xu, X.M. 

(2006). A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59, 

606-619. 

9. Farooqui, A.A., Yang, H.C., Rosenberger, T.A. and Horrocks, L.A. (1997). Phospholipase A2 and its 

role in brain tissue. J Neurochem 69, 889-901. 

 Page 25 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



26 

 

 

10. Farooqui, A.A., Litsky, M.L., Farooqui, T. and Horrocks, L.A. (1999). Inhibitors of intracellular 

phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological 

disorders. Brain Res Bull 49, 139-153. 

11. Liu, N.K. and Xu, X.M. (2010). Phospholipase A2 and its molecular mechanism after spinal cord 

injury. Mol Neurobiol 41, 197-205. 

12. Bonventre, J.V. (1996). Roles of phospholipases A2 in brain cell and tissue injury associated with 

ischemia and excitotoxicity. J Lipid Mediat Cell Signal 14, 15-23. 

13. Liu, N.K., Deng, L.X., Zhang, Y.P., Lu, Q.B., Wang, X.F., Hu, J.G., Oakes, E., Bonventre, J.V., 

Shields, C.B. and Xu, X.M. (2014). Cytosolic phospholipase A protein as a novel therapeutic target 

for spinal cord injury. Ann Neurol 75, 644-658. 

14. Murakami, M., Nakatani, Y., Atsumi, G., Inoue, K. and Kudo, I. (1997). Regulatory functions of 

phospholipase A2. Crit Rev Immunol 17, 225-283. 

15. Clark, J.D., Schievella, A.R., Nalefski, E.A. and Lin, L.L. (1995). Cytosolic phospholipase A2. J 

Lipid Mediat Cell Signal 12, 83-117. 

16. Sanford, S.D., Yun, B.G., Leslie, C.C., Murphy, R.C. and Pfenninger, K.H. (2012). Group IVA 

phospholipase A(2) is necessary for growth cone repulsion and collapse. J Neurochem 120, 974-984. 

17. Mikule, K., Gatlin, J.C., de la Houssaye, B.A. and Pfenninger, K.H. (2002). Growth cone collapse 

induced by semaphorin 3A requires 12/15-lipoxygenase. J Neurosci 22, 4932-4941. 

18. Harrison, M., O'Brien, A., Adams, L., Cowin, G., Ruitenberg, M.J., Sengul, G. and Watson, C. 

(2013). Vertebral landmarks for the identification of spinal cord segments in the mouse. Neuroimage 

68, 22-29. 

19. Street, I.P., Lin, H.K., Laliberte, F., Ghomashchi, F., Wang, Z., Perrier, H., Tremblay, N.M., Huang, 

Z., Weech, P.K. and Gelb, M.H. (1993). Slow- and tight-binding inhibitors of the 85-kDa human 

phospholipase A2. Biochemistry 32, 5935-5940. 

20. Kalyvas, A. and David, S. (2004). Cytosolic phospholipase A2 plays a key role in the pathogenesis of 

multiple sclerosis-like disease. Neuron 41, 323-335. 

 Page 26 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



27 

 

 

21. Fargo, K.N. and Sengelaub, D.R. (2004). Testosterone manipulation protects motoneurons from 

dendritic atrophy after contralateral motoneuron depletion. J Comp Neurol 469, 96-106. 

22. Fargo, K.N. and Sengelaub, D.R. (2004). Exogenous testosterone prevents motoneuron atrophy 

induced by contralateral motoneuron depletion. J Neurobiol 60, 348-359. 

23. Fargo, K.N. and Sengelaub, D.R. (2007). Androgenic, but not estrogenic, protection of motoneurons 

from somal and dendritic atrophy induced by the death of neighboring motoneurons. Dev Neurobiol 

67, 1094-1106. 

24. Goldstein, L.A., Kurz, E.M. and Sengelaub, D.R. (1990). Androgen regulation of dendritic growth 

and retraction in the development of a sexually dimorphic spinal nucleus. J Neurosci 10, 935-946. 

25. Kurz, E.M., Sengelaub, D.R. and Arnold, A.P. (1986). Androgens regulate the dendritic length of 

mammalian motoneurons in adulthood. Science 232, 395-398. 

26. Michel, R.P. and Cruz-Orive, L.M. (1988). Application of the Cavalieri principle and vertical sections 

method to lung: estimation of volume and pleural surface area. J Microsc 150, 117-136. 

27. Oorschot, D.E. (1994). Are you using neuronal densities, synaptic densities or neurochemical 

densities as your definitive data? There is a better way to go. Prog Neurobiol 44, 233-247. 

28. Nicolopoulos-Stournaras, S. and Iles, J.F. (1983). Motor neuron columns in the lumbar spinal cord of 

the rat. J Comp Neurol 217, 75-85. 

29. Brushart, T.M. and Seiler, W.A.t. (1987). Selective reinnervation of distal motor stumps by peripheral 

motor axons. Exp Neurol 97, 289-300. 

30. Al-Majed, A.A., Brushart, T.M. and Gordon, T. (2000). Electrical stimulation accelerates and 

increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J 

Neurosci 12, 4381-4390. 

31. Gundersen, H.J. (1988). The nucleator. J Microsc 151, 3-21. 

32. Kurz, E.M., Brewer, R.G. and Sengelaub, D.R. (1991). Hormonally mediated plasticity of 

motoneuron morphology in the adult rat spinal cord: a cholera toxin-HRP study. J Neurobiol 22, 976-

988. 

 Page 27 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



28 

 

 

33. Goldstein, L.A., Kurz, E.M., Kalkbrenner, A.E. and Sengelaub, D.R. (1993). Changes in dendritic 

morphology of rat spinal motoneurons during development and after unilateral target deletion. Brain 

Res Dev Brain Res 73, 151-163. 

34. Goldstein, L.A. and Sengelaub, D.R. (1994). Differential effects of dihydrotestosterone and estrogen 

on the development of motoneuron morphology in a sexually dimorphic rat spinal nucleus. J 

Neurobiol 25, 878-892. 

35. Hebbeler, S.L. and Sengelaub, D.R. (2003). Development of a sexually dimorphic neuromuscular 

system in male rats after spinal transection: morphologic changes and implications for estrogen sites 

of action. J Comp Neurol 467, 80-96. 

36. Hebbeler, S.L., Verhovshek, T. and Sengelaub, D.R. (2002). N-methyl-D-aspartate receptor blockade 

inhibits estrogenic support of dendritic growth in a sexually dimorphic rat spinal nucleus. J Comp 

Neurol 451, 142-152. 

37. Kalb, R.G. (1994). Regulation of motor neuron dendrite growth by NMDA receptor activation. 

Development 120, 3063-3071. 

38. Wilson, R.E., Coons, K.D. and Sengelaub, D.R. (2009). Neuroprotective effects of testosterone on 

dendritic morphology following partial motoneuron depletion: efficacy in female rats. Neurosci Lett 

465, 123-127. 

39. Hedreen, J.C., Bacon, S.J. and Price, D.L. (1985). A modified histochemical technique to visualize 

acetylcholinesterase-containing axons. J Histochem Cytochem 33, 134-140. 

40. Kennedy, B.P., Payette, P., Mudgett, J., Vadas, P., Pruzanski, W., Kwan, M., Tang, C., Rancourt, 

D.E. and Cromlish, W.A. (1995). A natural disruption of the secretory group II phospholipase A2 

gene in inbred mouse strains. J Biol Chem 270, 22378-22385. 

41. Trimble, L.A., Street, I.P., Perrier, H., Tremblay, N.M., Weech, P.K. and Bernstein, M.A. (1993). 

NMR structural studies of the tight complex between a trifluoromethyl ketone inhibitor and the 85-

kDa human phospholipase A2. Biochemistry 32, 12560-12565. 

 Page 28 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



29 

 

 

42. Riendeau, D., Guay, J., Weech, P.K., Laliberte, F., Yergey, J., Li, C., Desmarais, S., Perrier, H., Liu, 

S., Nicoll-Griffith, D. and et al. (1994). Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-

kDa phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by 

calcium ionophore-challenged platelets. J Biol Chem 269, 15619-15624. 

43. Ackermann, E.J., Conde-Frieboes, K. and Dennis, E.A. (1995). Inhibition of macrophage Ca(2+)-

independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones. J Biol Chem 270, 

445-450. 

44. Ghomashchi, F., Loo, R., Balsinde, J., Bartoli, F., Apitz-Castro, R., Clark, J.D., Dennis, E.A. and 

Gelb, M.H. (1999). Trifluoromethyl ketones and methyl fluorophosphonates as inhibitors of group IV 

and VI phospholipases A(2): structure-function studies with vesicle, micelle, and membrane assays. 

Biochim Biophys Acta 1420, 45-56. 

45. Bonventre, J.V., Huang, Z., Taheri, M.R., O'Leary, E., Li, E., Moskowitz, M.A. and Sapirstein, A. 

(1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase 

A2. Nature 390, 622-625. 

46. Tabuchi, S., Uozumi, N., Ishii, S., Shimizu, Y., Watanabe, T. and Shimizu, T. (2003). Mice deficient 

in cytosolic phospholipase A2 are less susceptible to cerebral ischemia/reperfusion injury. Acta 

Neurochir Suppl 86, 169-172. 

47. Marusic, S., Leach, M.W., Pelker, J.W., Azoitei, M.L., Uozumi, N., Cui, J., Shen, M.W., DeClercq, 

C.M., Miyashiro, J.S., Carito, B.A., Thakker, P., Simmons, D.L., Leonard, J.P., Shimizu, T. and 

Clark, J.D. (2005). Cytosolic phospholipase A2 alpha-deficient mice are resistant to experimental 

autoimmune encephalomyelitis. J Exp Med 202, 841-851. 

48. Sanchez-Mejia, R.O., Newman, J.W., Toh, S., Yu, G.Q., Zhou, Y., Halabisky, B., Cisse, M., Scearce-

Levie, K., Cheng, I.H., Gan, L., Palop, J.J., Bonventre, J.V. and Mucke, L. (2008). Phospholipase A2 

reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nat Neurosci 11, 

1311-1318. 

 Page 29 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



30 

 

 

49. Demediuk, P., Saunders, R.D., Anderson, D.K., Means, E.D. and Horrocks, L.A. (1987). Early 

membrane lipid changes in laminectomized and traumatized cat spinal cord. Neurochem Pathol 7, 79-

89. 

50. Demediuk, P., Saunders, R.D., Anderson, D.K., Means, E.D. and Horrocks, L.A. (1985). Membrane 

lipid changes in laminectomized and traumatized cat spinal cord. Proc Natl Acad Sci U S A 82, 7071-

7075. 

51. Resnick, D.K., Nguyen, P. and Cechvala, C.F. (2001). Regional and temporal changes in 

prostaglandin E2 and thromboxane B2 concentrations after spinal cord injury. Spine J 1, 432-436. 

52. Demediuk, P., Daly, M.P. and Faden, A.I. (1989). Changes in free fatty acids, phospholipids, and 

cholesterol following impact injury to the rat spinal cord. J Neurosci Res 23, 95-106. 

53. Bernstein, J.J. and Standler, N.A. (1983). Dendritic alteration of rat spinal motoneurons after dorsal 

horn mince: computer reconstruction of dendritic fields. Exp Neurol 82, 532-540. 

54. Bernstein, J.J., Wacker, W. and Standler, N. (1984). Spinal motoneuron dendritic alteration after 

spinal cord hemisection in the rat. Exp Neurol 83, 548-554. 

55. Standler, N.A. and Bernstein, J.J. (1984). Dendritic alteration of spinal motoneurons after ablation of 

somatomotor cortex. Exp Neurol 83, 264-273. 

56. Castro-Moure, F. and Goshgarian, H.G. (1997). Morphological plasticity induced in the phrenic 

nucleus following cervical cold block of descending respiratory drive. Exp Neurol 147, 299-310. 

57. Jones, B.E. and Yang, T.Z. (1985). The efferent projections from the reticular formation and the locus 

coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol 242, 56-

92. 

58. Martin, G.F., Vertes, R.P. and Waltzer, R. (1985). Spinal projections of the gigantocellular reticular 

formation in the rat. Evidence for projections from different areas to laminae I and II and lamina IX. 

Exp Brain Res 58, 154-162. 

 Page 30 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



31 

 

 

59. Magnuson, D.S., Trinder, T.C., Zhang, Y.P., Burke, D., Morassutti, D.J. and Shields, C.B. (1999). 

Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal 

cord of the adult rat. Exp Neurol 156, 191-204. 

60. Loy, D.N., Talbott, J.F., Onifer, S.M., Mills, M.D., Burke, D.A., Dennison, J.B., Fajardo, L.C., 

Magnuson, D.S. and Whittemore, S.R. (2002). Both dorsal and ventral spinal cord pathways 

contribute to overground locomotion in the adult rat. Exp Neurol 177, 575-580. 

61. Raineteau, O. and Schwab, M.E. (2001). Plasticity of motor systems after incomplete spinal cord 

injury. Nat Rev Neurosci 2, 263-273. 

62. Gazula, V.R., Roberts, M., Luzzio, C., Jawad, A.F. and Kalb, R.G. (2004). Effects of limb exercise 

after spinal cord injury on motor neuron dendrite structure. J Comp Neurol 476, 130-145. 

63. Peckham, P.H., Mortimer, J.T. and Marsolais, E.B. (1976). Alteration in the force and fatigability of 

skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. 

Clin Orthop Relat Res, 326-333. 

64. Giangregorio, L. and McCartney, N. (2006). Bone loss and muscle atrophy in spinal cord injury: 

epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29, 489-500. 

65. Gordon, T. and Mao, J. (1994). Muscle atrophy and procedures for training after spinal cord injury. 

Phys Ther 74, 50-60. 

66. Goldspink, D.F. (1977). The influence of immobilization and stretch on protein turnover of rat 

skeletal muscle. J Physiol 264, 267-282. 

67. Williams, P.E. and Goldspink, G. (1973). The effect of immobilization on the longitudinal growth of 

striated muscle fibres. J Anat 116, 45-55. 

 

 

 

 Page 31 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



32 

 

 

 Page 32 of 42 

Jo
ur

na
l o

f 
N

eu
ro

tr
au

m
a

In
hi

bi
tio

n 
of

 c
PL

A
2 

ha
s 

ne
ur

op
ro

te
ct

iv
e 

ef
fe

ct
s 

on
 m

ot
on

eu
ro

n 
an

d 
m

us
cl

e 
at

ro
ph

y 
fo

llo
w

in
g 

sp
in

al
 c

or
d 

in
ju

ry
 (

do
i: 

10
.1

08
9/

ne
u.

20
14

.3
69

0)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

v 
A

cq
 D

ep
t f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
9/

05
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



33 

 

 

 

 

Figure 1.  Histological and stereological analysis of spinal cord spared tissue and lesion volume 

after contusive spinal cord injury (SCI) with or without arachidonyl trifluoromethyl ketone 

(ATK) treatment. (A) Representative section near the lesion epicenter stained with cresyl violet 

and eosin, showing a large centrally located lesion with areas of spared gray and white matter.  

(B) Neurolucida drawing from the same section showing the lesion area, residual white matter 

(WM), and spared gray matter (GM).  (C) Percentage of lesion area at injury epicenter did not 

differ across injured animals that were either untreated (SCI), or treated with ATK (SCI+ATK).  

However, lesion volumes (D) and percent total volumes (E) of lesion and spared white matters 

differed across groups.  Scale bar =250 µm. 
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Figure 2.  (Left)  Darkfield digital micrographs of transverse hemisections through the lumbar 

spinal cords of a sham animal (top), an injured animal treated with vehicle (spinal cord injury 

[SCI]+vehicle, middle), and an arachidonyl trifluoromethyl ketone (ATK)-treated injured animal 

(SCI+ATK, bottom), after injection of horseradish peroxidase conjugated to the cholera toxin B 

subunit (BHRP) into the left vastus lateralis muscle.  (Right) Computer-generated composites of 

BHRP-labeled somata and processes drawn at 480 μm intervals through the entire rostrocaudal 

extent of the quadriceps motor pool; these composites were selected because they are 

representative of their respective group average dendritic lengths.  Scale bar = 250 µm.   
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Figure 3.  (A)  Dendritic lengths of quadriceps motoneurons after spinal cord injury (SCI).  

Following contusion injury, surviving quadriceps motoneurons lost over 28% of their dendritic 

length.  Treatment with ATK attenuated this dendritic atrophy.  * indicates significantly different 

from sham animals. Inset: Drawing of spinal gray matter divided into radial sectors for measure 

of quadriceps motoneuron dendritic distribution (B and E) and radial dendritic extent (C and F). 

(B)  Length per radial bin of quadriceps dendrites of sham animals (unfilled bars) and injured 

animals that were either untreated (SCI+vehicle, gray bars), or treated with arachidonyl 

trifluoromethyl ketone (ATK) (SCI+ATK, black bars).  For graphic purposes, dendritic length 

measures have been collapsed into 6 bins of 60° each.  Quadriceps motoneuron dendritic arbors 

display a non-uniform distribution, with the majority of the arbor located between 300° and 

120°.  Following contusion injury, surviving quadriceps motoneurons in untreated animals had 

reduced dendritic lengths throughout the radial distribution.  Treatment with ATK attenuated 

these reductions.  * indicates significantly different from sham animals. (C)   Radial extents of 

quadriceps dendrites of sham animals (unfilled bars) and injured animals that were either 

untreated (SCI+vehicle, gray bars), or treated with arachidonyl trifluoromethyl ketone (ATK) 

(SCI+ATK, black bars).  For graphic purposes, dendritic extent measures have been collapsed 

into 6 bins of 60° each.  Following contusion injury, extent measures of surviving quadriceps 

motoneurons in SCI+vehicle and SCI+ATK animals did not differ from those of sham animals.  

(D) Dendritic lengths of quadriceps motoneurons of sham animals and injured animals that were 

either wild type (WT), or cPLA2 KO. Genetic deletion of cPLA2 attenuated SCI-induced 

dendritic atrophy. (E) Length per radial bin of quadriceps dendrites of sham animals (unfilled 
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bars) and injured animals that were either WT (gray bars), or cPLA2 KO mice (black bars). There 

is a significant effect of radial dendritic location. (F) Radial extents of quadriceps dendrites of 

sham animals (unfilled bars) and injured animals that were either WT (gray bars), or cPLA2 KO 

mice (black bars). Radial dendritic extent did not differ across groups. 
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Figure 4.  Histological and morphological analysis of the vastus lateralis muscle after contusive 

spinal cord injury (SCI) with or without treatment. (A) Representative cross section through the 

body of the vastus lateralis muscle from a sham animal stained with Milligan’s trichrome stain.  

Weights (B) and cross-sectional fiber areas (C) of the vastus lateralis muscles in sham animals 

and injured animals that were either untreated (SCI+vehicle), or treated with arachidonyl 

trifluoromethyl ketone (ATK) (SCI+ATK).  Following contusion injury, both the weight and 

fiber size of the vastus lateralis muscle in untreated animals were reduced over 20%.  Treatment 

with ATK attenuated reductions in weight but not fiber area.  Bar heights represent means ± 

SEM.  * indicates significantly different from sham animals.  Scale bar = 100 µm. 
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Figure 5.  Histological and morphological analysis of motor endplate size after contusive spinal 

cord injury (SCI) with or without treatment. (A) Representative longitudinal section through the 

body of the vastus lateralis muscle from a sham animal after staining for acetylcholinesterase.  

SCI had no effect on the motor endplate size (B) or density (C), regardless of treatment.  Bar 

heights represent means ± SEM.  Scale bar = 250 µm. 
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