32 research outputs found

    Giant Vascular Malformation in an Infant’s Hand

    Get PDF
    Medical Imag

    Bacteriological profile and antimicrobial sensitivity pattern in neonatal sepsis: a study from North India

    Get PDF
    Background: Neonatal sepsis is a leading cause of neonatal mortality and continues to be a formidable problem for neonatologists and pediatricians world over.  Knowledge of microbial flora and their susceptibility will help us to decide empirical treatment for the neonatal sepsis. The objective of this study was to determine the bacteriological flora prevalent in NICU and the antimicrobial sensitivity pattern.Methods: The blood culture reports of all the neonates with culture proven neonatal sepsis during the period July 2010 to September 2013 were reviewed retrospectively. A retrospective review in tertiary care teaching medical college. The data was entered in Excel sheets and percentages of various outcomes were calculated.Results: A total of 28,927 babies were born during the study period and 336 among them had positive blood culture. The incidence of neonatal sepsis was 11.62 per 1,000 live births. Three hundred fifty- six microbes were isolated, out of which 50% presented as early onset sepsis and remaining as late onset sepsis. Pseudomonas aeruginosa was the most common organism encountered in both early (43.82%) and late onset sepsis (51.35%). Gram negative bacilli were sensitive to carbapenems (92%) followed by piperacillin-tazobactam (90%) whereas linezolid (90%) was most sensitive antimicrobial for gram positive cocci.Conclusions: Pseudomonas was most commonly isolated in both early and late onset sepsis.  Gram negative bacilli were most sensitive to piperacillin-tazobactam and the carbapenems whereas linezolid and vancomycin were most effective against the gram-positive cocci. Resistance to third generation cephalosporins was rampant. Continuous surveillance for microbial flora, their antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling may be of help to curtail emerging antimicrobial resistance

    Urinary ascites in a preterm female neonate: a rare case report

    Get PDF
    Here we report a rare case of urinary ascites due to spontaneous bladder rupture in a preterm female neonate. The baby presented with respiratory distress, abdominal distension, anuria, and renal insufficiency. The diagnosis of bladder rupture was confirmed by peritoneal fluid aspiration with biochemical analysis and ultrasonography abdomen. The patient was managed successfully by establishing urinary outflow with indwelling Foley’s catheterization of the urinary bladder.Keywords: bladder rupture, neonate, urinary ascite

    Quantitative nucleotide level analysis of regulation of translation in response to depolarization of cultured neural cells

    Get PDF
    Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequence—notably upstream open reading frames and secondary structure in the 5′ untranslated region—both of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome

    ALCAM Regulates Mediolateral Retinotopic Mapping in the Superior Colliculus

    Get PDF
    ALCAM [activated leukocyte cell adhesion molecule (BEN/SC-1/DM-GRASP)] is a transmembrane recognition molecule of the Ig superfamily (IgSF) containing five Ig domains (two V-type, three C2-type). Although broadly expressed in the nervous and immune systems, few of its developmental functions have been elucidated. Because ALCAM has been suggested to interact with the IgSF adhesion molecule L1, a determinant of retinocollicular mapping, we hypothesized that ALCAM might direct topographic targeting to the superior colliculus (SC) by serving as a substrate within the SC for L1 on incoming retinal ganglion cell (RGC) axons. ALCAM was expressed in the SC during RGC axon targeting and on RGC axons as they formed the optic nerve; however, it was downregulated distally on RGC axons as they entered the SC. Axon tracing with DiI revealed pronounced mistargeting of RGC axons from the temporal retina half of ALCAM null mice to abnormally lateral sites in the contralateral SC, in which these axons formed multiple ectopic termination zones. ALCAM null mutant axons were specifically compromised in medial orientation of interstitial branches, which is known to require the ankyrin binding function of L1. As a substrate, ALCAM-Fc protein promoted L1-dependent attachment of acutely dissociated retinal cells and an L1-expressing, ALCAM-negative cell line, consistent with an ALCAM-L1 heterophilic molecular interaction. Together, these results suggest a model in which ALCAM in the SC interacts with L1 on RGC axons to promote medial extension of RGC axon branches important for mediolateral axon targeting in the formation of retinocollicular maps

    Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation

    Get PDF
    Hypocretin (orexin; Hcrt)-containing neurons of the hypothalamus are essential for the normal regulation of sleep and wake behaviors and have been implicated in feeding, anxiety, depression, and reward. The absence of these neurons causes narcolepsy in humans and model organisms. However, little is known about the molecular phenotype of these cells; previous attempts at comprehensive profiling had only limited sensitivity or were inaccurate. We generated a Hcrt translating ribosome affinity purification (bacTRAP) line for comprehensive translational profiling of all ribosome-bound transcripts in these neurons in vivo. From this profile, we identified >6000 transcripts detectably expressed above background and 188 transcripts that are highly enriched in these neurons, including all known markers of the cells. Blinded analysis of in situ hybridization databases suggests that ∼60% of these are expressed in a Hcrt marker-like pattern. Fifteen of these were confirmed with double labeling and microscopy, including the transcription factor Lhx9. Ablation of this gene results in a >30% loss specifically of Hcrt neurons, without a general disruption of hypothalamic development. Polysomnography and activity monitoring revealed a profound hypersomnolence in these mice. These data provide an in-depth and accurate profile of Hcrt neuron gene expression and suggest that Lhx9 may be important for specification or survival of a subset of these cells

    EphB regulates L1 phosphorylation during retinocollicular mapping

    Get PDF
    Interaction of the cell adhesion molecule L1 with the cytoskeletal adaptor ankyrin is essential for topographic mapping of retinal ganglion cell (RGC) axons to synaptic targets in the superior colliculus (SC). Mice mutated in the L1 ankyrin-binding motif (FIGQY1229H) display abnormal mapping of RGC axons along the mediolateral axis of the SC, resembling mouse mutant phenotypes in EphB receptor tyrosine kinases. To investigate whether L1 functionally interacts with EphBs, we investigated the role of EphB kinases in phosphorylating L1 using a phospho-specific antibody to the tyrosine phosphorylated FIGQY1229 motif. EphB2, but not an EphB2 kinase dead mutant, induced tyrosine phosphorylation of L1 at FIGQY1229 and perturbed ankyrin recruitment to the membrane in L1-transfected HEK293 cells. Src family kinases mediated L1 phosphorylation at FIGQY1229 by EphB2. Other EphB receptors that regulate medial-lateral retinocollicular mapping, EphB1 and EphB3, also mediated phosphorylation of L1 at FIGQY1229. Tyrosine1176 in the cytoplasmic domain of L1, which regulates AP2/clathrin-mediated endocytosis and axonal trafficking, was not phosphorylated by EphB2. Accordingly mutation of Tyr1176 to Ala in L1-Y1176A knock-in mice resulted in normal retinocollicular mapping of ventral RGC axons. Immunostaining of the mouse SC during retinotopic mapping showed that L1 colocalized with phospho-FIGQY in RGC axons in retinorecipient layers. Immunoblotting of SC lysates confirmed that L1 was phosphorylated at FIGQY1229 in wild type but not L1-FIGQY1229H (L1Y1229H) mutant SC, and that L1 phosphorylation was decreased in the EphB2/B3 mutant SC. Inhibition of ankyrin binding in L1Y1229H mutant RGCs resulted in increased neurite outgrowth compared to WT RGCs in retinal explant cultures, suggesting that L1-ankyrin binding serves to constrain RGC axon growth. These findings are consistent with a model in which EphB kinases phosphorylate L1 at FIGQY1229 in retinal axons to modulate L1-ankyrin binding important for mediolateral retinocollicular topography

    A Case of Deep Vein Thrombosis and Intracranial Sinus Thrombosis : Possible rare complications of childhood abdominal tuberculosis

    Get PDF
    Severe pulmonary tuberculosis (TB) complicated by deep vein thrombosis (DVT) in adults has been reported previously in the medical literature; however, childhood extrapulmonary TB complicated by DVT is rare. We report a 13-year-old girl who presented to the Department of Pediatrics at the Postgraduate Institute of Medical Sciences in Rohtak, India, in 2012 with abdominal TB complicated by DVT and intracranial sinus thrombosis. She was treated with a course of four antitubercular drugs and short-term anticoagulation therapy with a positive outcome over the next six months. To the best of the authors’ knowledge, no previous reports have yet suggested a possible association between childhood TB and intracranial sinus thrombosis

    Circadian regulation of Limulus visual functions: A role for octopamine and cAMP

    No full text
    The purpose of this contribution is to review our current understanding of the source and biochemistry of the circadian efferent input to the eyes of the American horseshoe crab Limulus polyphemus and the impact of this input on the structure, physiology and biochemistry of Limulus eyes. Special emphasis is given to the role of the biogenic amine octopamine and biochemical cascades it activates in the eyes. In addition to reviewing published data, we present new data showing that octopamine elevates cAMP levels in Limulus lateral eyes, and we partially characterize the pharmacology of the receptors involved in this response. We also present new data showing that octopamine regulates gene expression in Limulus lateral eyes by activating a cAMP cascade [Current Zoology 56 (5): 518–536, 2010]
    corecore