1,570 research outputs found
Phonons Softening in Tip-Stretched Monatomic Nanowires
It has been shown in recent experiments that electronic transport through a
gold monatomic nanowire is dissipative above a threshold voltage due to
excitation of phonons via the electron-phonon interaction. We address that data
by computing, via density functional theory, the zone boundary longitudinal
phonon frequency of a perfect monatomic nanowire during its mechanical
elongation. The theoretical frequency that we find for an ideally strained
nanowire is not compatible with experiment if a uniformly distributed stretch
is assumed. With the help of a semi-empirical Au-Au potential, we model the
realistic nanowire stretching as exerted by two tips. In this model we see that
strain tends to concentrate in the junctions, so that the mean strain of the
nanowire is roughly one half of the ideal value. With this reduced strain, the
calculated phonon softening is in much better agreement with experiment.Comment: 9 pages,3 figures, Surface Science, in pres
Development of configurational forces during the injection of an elastic rod
When an inextensible elastic rod is 'injected' through a sliding sleeve
against a fixed constraint, configurational forces are developed, deeply
influencing the mechanical response. This effect, which is a consequence of the
change in length of the portion of the rod included between the sliding sleeve
and the fixed constraint, is theoretically demonstrated (via integration of the
elastica) and experimentally validated on a proof-of-concept structure
(displaying an interesting force reversal in the load/deflection diagram), to
provide conclusive evidence to mechanical phenomena relevant in several
technologies, including guide wire for artery catheterization, or wellbore
insertion of a steel pipe.Comment: 10 pages, 4 figures, Extreme Mechanics Letters (2015
Electric fields with ultrasoft pseudo-potentials: applications to benzene and anthracene
We present density functional perturbation theory for electric field
perturbations and ultra-soft pseudopotentials. Applications to benzene and
anthracene molecules and surfaces are reported as examples. We point out
several issues concerning the evaluation of the polarizability of molecules and
slabs with periodic boundary conditions.Comment: 10 pages, 7 figures, to appear in J. Chem. Phy
Experimental investigation of the elastoplastic response of aluminum silicate spray dried powder during cold compaction
Mechanical experiments have been designed and performed to investigate the
elasto-plastic behaviour of green bodies formed from an aluminum silicate spray
dried powder used for tiles production. Experiments have been executed on
samples obtained from cold compaction into a cylindrical mould and include:
uniaxial strain, equi-biaxial flexure and high-pressure triaxial
compression/extension tests. Two types of powders have been used to realize the
green body samples, differing in the values of water content, which have been
taken equal to those usually employed in the industrial forming of traditional
ceramics. Yielding of the green body during compaction has been characterized
in terms of yield surface shape, failure envelope, and evolution of cohesion
and void ratio with the forming pressure, confirming the validity of previously
proposed constitutive models for dense materials obtained through cold
compaction of granulates.Comment: 17 pages; Journal of the European Ceramic Society, 201
Finite element simulation of a gradient elastic half-space subjected to thermal shock on the boundary
The influence of the microstructure on the macroscopical behavior of complex materials is disclosed under thermal shock conditions. The thermal shock response of an elastic half-space subjected to convective heat transfer at its free surface from a fluid undergoing a sudden change of its temperature is investigated within the context of the generalized continuum theory of gradient thermoelasticity. This theory is employed to model effectively the material microstructure. This is a demanding initial boundary value problem which is solved numerically using a higher-order finite element procedure. Simulations have been performed for different values of the microstructural parameters showing that within the gradient material the thermoelastic pulses are found to be dispersive and smoother than those within a classical elastic solid, for which the solution is retrieved as a special case. Energy type stability estimates for the weak solution have been obtained for both the fully and weakly coupled thermoelastic systems. The convergence characteristics of the proposed finite element schemes have been verified by several numerical experiments. In addition to the direct applicative significance of the obtained results, our solution serves as a useful benchmark for modeling more complicated problems within the framework of gradient thermoelasticity
- …