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Abstract. The influence of the microstructure on the macroscopical behavior of 
complex materials is disclosed under thermal shock conditions. The thermal shock 
response of an elastic half-space subjected to convective heat transfer at its free surface 
from a fluid undergoing a sudden change of its temperature is investigated within the 
context of the generalized continuum theory of gradient thermoelasticity. This theory 
is employed to model effectively the material microstructure. This is a demanding 
initial boundary value problem which is solved numerically using a higher-order finite 
element procedure. Simulations have been performed for different values of the 
microstructural parameters showing that within the gradient material the thermoelastic 
pulses are found to be dispersive and smoother than those within a classical elastic solid, 
for which the solution is retrieved as a special case. Energy type stability estimates for 
the weak solution have been obtained for both the fully and weakly coupled 
thermoelastic systems. The convergence characteristics of the proposed finite element 
schemes have been verified by several numerical experiments. In addition to the direct 
applicative significance of the obtained results, our solution serves as a useful 
benchmark for modeling more complicated problems within the framework of gradient 
thermoelasticity. 
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1. Introduction 

It is well-known that the material microstructure influences the macroscopical behavior 
of complex solids, such as composites, cellular materials, and ceramics. Classical 
continuum theories do not incorporate internal length-scales and therefore cannot 
capture the pertinent scale effects that are associated with the underlying material 
microstructure. To this purpose, various generalized (enhanced) continuum theories 
(for a comprehensive review, see [1]) have been proposed, enriching the classical 
description with additional material length scales and, thus, extending the range of 
applicability of the ‘continuum’ concept in an effort to bridge the gap between classical 
continuum theories and atomic-lattice theories. These models have also been derived 
from the theoretical identification of homogeneous materials equivalent to composites 
with heterogeneous classic phases [2-5] and from experimental testing at small scales 
[6-8]. 

In the last decade, the study of microstructured materials through enhanced continuum 
theories has been significantly boosted by recent advances in the fields of 
nanomechanics, micromachining, and bioengineering. The use of such theories allows 
a more accurate description of the mechanical response of high performance 
microstructured materials for instance, in problems where high strain / stress gradients 
emerge [9-12] or when instability phenomena are involved [13-15]. 

One of the most effective generalized continuum theories has proved to be the theory 
of gradient elasticity, also known as dipolar gradient elasticity or grade-two theory [16, 
17]. According to the gradient elasticity theory, the material points inside a continuum 
can be visualized as micro-continuum with their own internal displacement field 
described in reference to a local coordinate system. Assuming enough regularity of the 
deformation process, the internal displacement field of each point can be expanded in 
Taylor series. If only the linear terms of these expansions are retained, the dipolar 
theory is obtained. The continuum under consideration consists of structural units 
(micro-media) in the form of cubes with edge length, which is an inherent length 
characteristic of the material structure (e.g. grain size). The presence of this length 
parameter, in turn, implies that the gradient elasticity theory encompasses the analytical 
possibility of size effects, which are absent in the classical theory. The physical 
relevance of the characteristic material length scales as introduced through gradient 
type theories has been the subject of numerous experimental studies. In particular, 
atomistic calculations and experiments indicate that for most metals, the characteristic 
internal length is of the order of the lattice parameter [4, 18]. However, foam and 
cellular materials exhibit a characteristic length that is comparable to the average cell 
size, whereas in laminates is of the order of the laminate thickness [2,7,8]. 

In recent years, the thermoelastic behavior of complex microstructured materials has 
attracted considerable attention since their high performance properties are closely 
related to their reliability under changing thermal conditions. Various gradient type 
models have been developed in order to describe the thermomechanical response of 



such microstructured continua [19-24]. In several of these models non-local phenomena 
in the time dependence of the fields have been also considered, leading to non-Fourier 
heat transfer models like the Vernotte-Cattaneo model [25, 26]. The generalized Green-
Lindsay model presented in [23], in a reduced form corresponding to the consideration 
of classical Fourier heat diffusion, will be the subject of the present analysis. This 
particular model will be employed for the study of the response of a gradient elastic 
half-space subjected to thermal shock on its boundary. The thermal shock is induced by 
convective heat transfer with a surrounding medium that undergoes a sudden change in 
its temperature (Fig. 1). The problem examined in the present work extends the analysis 
of Danilovskaya [27] to a microstructured material modelled by gradient 
thermoelasticity. The goal of the present study is to reveal the influence of the 
microstructure on the macroscopical behavior of complex materials under thermal 
shock conditions. It is worth noting that due to the complexity of the equations of 
gradient thermoelasticity very few solutions to benchmark initial-boundary problems, 
such as the present one, exist in the literature. 

The paper is organized as follows. The equations governing the thermoelastic response 
of a gradient elastic solid, as derived in [23], are briefly introduced. After selecting 
appropriate nondimensional quantities, the respective Initial-Boundary Value Problem 
(IBVP) is stated. The variational form of the problem is defined and stability estimates 
for the weak solution are provided. Both cases of weak and strong thermoelastic 
coupling are analyzed. The case of a classical thermoelastic half-space may be retrieved 
by setting the microstructural parameters of the enhanced model to zero. In the 
framework of classical elasticity, the problem under consideration has been treated by 
many authors [27-31], and these results will be used as reference solutions for 
comparison between the two theories. 

For the solution of the enhanced thermoelastic model, special finite elements are 
introduced, based on the weak formulation of the IBVP. These 3 node elements feature 
Hermite polynomials of 5th degree for the approximation of the displacement field. The 
higher regularity finite element space introduced is needed due to the higher order 
spatial derivatives acting on the displacement field in the governing partial differential 
equations. Several numerical results are presented and the convergence characteristics 
of the proposed numerical scheme are studied in detail. An energy balance equation is 
formulated based on the variational form of the weakly coupled system and the 
compliance of the numerical solutions with this constraint is analyzed. Moreover, the 
dispersive nature of the thermoelastic pulses, as dictated by the gradient elasticity 
theory [32-35], has been verified and found to occur in normal or anomalous type, 
depending on the relative magnitude of the microstructural parameters. It is shown that 
the resulting kinematic fields (displacements, strains) are smoother than those predicted 
by the classical theory of thermoelasticity [31]. 

 



 

 

Figure 1. Gradient elastic half-space subjected to convective heat transfer with a 
surrounding fluid at its free boundary. 

 

2. Governing Equations 

In the following, we consider a homogeneous gradient elastic half space. The half-space 

is assumed to be initially at uniform temperature oT  and the free surface is suddenly 

subjected to convection heat transfer with a surrounding fluid medium at temperature 

oT T  . The convective heat transfer starts at time instant 0t   and constitutes the only 

forcing for all 0t  . The governing equations for the thermoelastic response of a solid 
have been derived in the framework of gradient elasticity theory as a special case of 
more general thermoelastic models [23, 24] including second sound effects for the heat 
diffusion phenomenon. In what follows, we assume classical Fourier heat transfer. 
Since the convection boundary condition is applied uniformly on the free surface of the 
half-space, the temperature and displacement field vary only in the direction x  along 
the depth of the half-space. Assuming that at point x  and time instant t , the 
temperature inside the half-space is ( , )T x t , we introduce the temperature difference 

( , ) ( , ) ox t T x t T   . For small values of the temperature variation  , the three 

dimensional classical thermoelastic equations for a gradient elastic solid (see e.g. [23]) 
are reduced to the following 1D system    

(3 2 ) 0e t xx o xtc k T a u          ,     (1) 

 1 2 23 ( 2 ) (3 2 ) 0tt xxtt xx xxx
u H u u g u a             .   (2) 

where u  is the displacement along the x  - axis and  , ec , k , a  are the material 

density, specific heat capacity under constant strain, thermal conductivity and thermal 
expansion coefficient respectively. The classical notation ,   is used for the Lamé 

constants of elasticity. Moreover, the subscripts ,x t  denote differentiation with respect 



to the spatial and temporal variable, respectively. Finally, the characteristic lengths 
associated with gradient elasticity are H  and g , providing higher order contributions 

to the kinetic and strain energy densities respectively. 

Appropriate boundary conditions, variationally consistent with (2), at the traction-free 
surface of the half-space are [16, 17] 

( ) 1 2 20 3 ( 2 )( ) (3 2 ) 0n
xtt x xxxP H u u g u a             , on 0x  ,    (3a) 

( ) 0 0n
xxR u   , on 0x  ,                                     (3b)  

expressing zero monopolar ( )nP  and dipolar ( )nR  tractions, respectively. Note that the 

dipolar traction ( )nR  represents a double-stress without a moment (pinch). An example 
from structural mechanics of similar self-equilibrating double-forces without moment 
can be found in the bending analysis of a beam with T-type cross-section [36]. 

Moreover, the monopolar traction ( )nP  represents the force-vector acted upon the free 
surface. 

The following point now deserves attention: in the general dynamical case, the 
existence of the inertia and micro-inertia terms in the equation of motion and in the 
boundary conditions (see Eqs. (2) and (3a)) violates the assumption of (Euclidean) 
objectivity when the motion is considered in non-inertial frames. As Jaunzemis [37, p. 
233] points out, the issue of objectivity in constrained generalized continuum theories 
(e.g. constrained Cosserat and strain-gradient theories) can be circumvented by 
introducing an objective generalized (effective) body force and an objective generalized 
body double-force. The former is defined as the difference of the standard body force 
and the inertia term (related to the acceleration – see also [38, p. 159] in the classical 
setting), and the latter as the difference of the standard body double-force and the micro-
inertia term (related to the acceleration gradient). The generalized body force and body 
double-force are assumed to be objective although its constituents are not (see also 
[39]). 

The convection heat transfer occurring at 0x   is expressed through Newton’s law of 
cooling as 

 x ck C    , where oT T   .   (4)  

where cC  is the convection coefficient. The surrounding fluid medium temperature   

is assumed to be a function of the temporal variable with the form  

( ) ( )t f t   ,      (5)  

where   is the temperature increase or decrease, with respect to the reference state oT

, attained by the surrounding medium and ( ) :[0, ] [0,1]f t J  , is a function 



characterizing the temperature forcing variation with respect to time. For the classical 

‘thermal shock’ condition it is 0( ) ( )f t t t H , where H  denotes the Heaviside 

function. Mollified versions of thermal shock conditions may be also modeled by 
selecting appropriately the form of f  (e.g. ramp functions) as shown in figure 2. 

At infinity, vanishing temperature, displacement and displacement gradient fields are 
assumed   

 lim , , 0x xu u  ,      (6) 

while zero initial conditions are imposed as 

                                             ( ,0) ( ,0) ( ,0) 0tx u x u x    .                      (7) 

 

Figure 2. Time profile of the temperature change in the surrounding fluid, influencing 
convective heat transfer with the gradient elastic half-space.  

 

3. Nondimensional quantities and scaling considerations 

Let us introduce the thermal diffusivity  / ek c   and the elastic P-wave speed 

( 2 ) /pc      . The characteristic length for the classical thermoelastic model is 

/ pc  . Utilizing these parameters, the following nondimensional quantities are 

introduced 

/x   , /pc t   , / oT   ,  /U u  .    (8) 

Let /pJ c J     and set (0, ) (0, )Q J   . The initial – boundary value (IBVP) 

problem in nondimensional form becomes: Find  , U  such that  

1 0DU      , in Q       (9) 



 2 2
2 0A BU U U U D    

       , in Q     (10) 

where 1 / 3A H   , 1
B g   , 1

(3 2 )

e

a
D

c

 



  , 2 2

(3 2 )o

p

T a
D

c

 



  , 

The convection boundary condition in nondimensional form is  

 Bi     , on 0  , (0, )J  ,    (11) 

where Bi /cC k   is the nondimensional Biot number characterizing the magnitude of 

convective heat transfer with respect to that of heat conduction. Note that for Bi  

the free surface of the half space attains the temperature   and the Robin condition 

(11) becomes ( 0, ) ( )     . Zero traction conditions at the free surface of the 

half-space and conditions at infinity now read 

0U     and   2 2
2 0A BU U U D        , on 0  ,  (0, )J     (12) 

lim , , 0U U    , (0, )J  .    (13)  

Finally, the initial conditions (7) become 

( ,0) ( ,0) ( ,0) 0U U       for all (0, )   .   (14)  

The above introduced nondimensional quantities are the ones typically used for the 
analysis of homogeneous materials in order to introduce a space-time frame suitable for 
studying the transient effects of thermal shock problems [27, 28, 31]. Notice that in the 
case of the classical elastic half space subjected to thermal shock, no other characteristic 
length than   is introduced. 

Setting 1 0D  , results in the elimination of the coupling term U  from the heat 

transfer equation (9). The corresponding weakly coupled system gives rise to the 
problem of thermal stresses in a gradient elastic half space. 

     

4. Variational Formulation 

In this section, the variational formulation of the previously stated IBVP will be 
derived. Let us first introduce some notation regarding the appropriate function spaces 

for the solution of the weak form. The standard notation ( )kH  , k  is used for the 

Hilbert (Sobolev) function spaces ,2 ( )kW   over the open domain   and 
0 2( ) ( )H L   . For J   and every Banach space V  the function valued space 

2 (0, ; )L J V , equipped with the norm 



 2

1/2
2

(0, ; ) 0

J

L J V V
v v d . 

will be extensively used (see for example [40]). 

Multiply equations (9), (10) with 1(0, )H  , 2 (0, )v H  , respectively. Assuming 

enough regularity, integration by parts and use of boundary conditions (11) and (12) 
along with conditions at infinity, yields the variational problem: 

Find ,U  such that 

10 0 0
Bi (0) (0, ) Bi (0) ( / )pd d D U d f c            

  
          ,  (15) 

a.e. in (0, )J , for every 1(0, )H   and 

2 2
20 0 0 0 0

0A BvU d v U d v U d v U d D v d             
    

          , (16) 

a.e. in (0, )J , for every 2(0, )v H  , along with the corresponding homogeneous 

initial conditions. 

In the following stability estimates for the weak solution of the above variational 
problem will be derived. We will first consider the uncoupled (or weakly coupled) case 
since in many applications the difference in the response of the fully coupled and 
weakly coupled systems is negligible [29, 31].  

 

5. The weakly coupled system 

In the case where 1 0D  , the thermoelastic system (9), (10) becomes uncoupled, since 

equation (9) for the temperature field does not depend upon the displacement. In this 
case, the initial boundary value problem becomes 

2 2
20 0 0 0 0A BvU d v U d v U d v U d D v Fd             

    
         ,   (17) 

a.e. in (0, )J , for every 2 (0, )v H  , 

where F  is the temperature profile inside the half-space, given as the solution of initial-
boundary value problem 

0    , in Q .      (18) 

with the convection boundary condition (11), lim ( , ) 0      and initial condition 

( , 0) 0    .    



In the following an energy balance equation will be derived and energy type stability 

estimates will be proved. Setting v U  in (17), and using the identities 

2

2

(0, )0

1

2 L

d
U U d U

d  





  , 1

2

(0, )0

1

2 H

d
U U d U

d  





   and 

1 2

2 22 2

(0, ) (0, )0 0

1

2B BH H

d
U U d U U d U U

d      


 

 
      ,  

we get for s   

2 1 1 2

2 2 2 22 2
2(0, ) (0, ) (0, ) (0, ) 0

2s A s B sL H H H

d d d
U U U U D U Fd

ds ds ds   


   
       ,   (19)  

where 
(0, )kH 

  is the standard seminorm in (0, )kH  . 

Integrating equation (19) with respect to the temporal variable from 0s   to s J 
, and setting 

1 22 1

2 2 2 22 2

(0, ) (0, )(0, ) (0, )
( ; , )A B A BH HL H

E U U U U     
  

    ,     (20)  

2 0 0
( ) sP D U Fd ds



 


    ,     (21)  

   we get ( ; , ) 2 ( )A BE P    , (0, ]J  .         (22) 

Equation (22) expresses an energy balance and will be used in the following as means 
to verify the quality of the numerical solutions for the problem of thermal stresses inside 
the gradient elastic half-space. A typical stability estimate of the form 

2 2 2 22 1 2(0, ; (0, )) (0, ; (0, ))(0, ; (0, ))
2 CJ

L J H L J LL J H
U U CJe D F  

  ,   (23) 

with 2 2 2 2( , ) 1/ min 1, ,A B A BC C          can be shown for the weakly coupled IBVP, in 

a straightforward manner. Observe that by adding 
0

U Ud 


  to both sides of (17) it is 

2 1 2 1 2

2 2 2 2 22 2

(0, ) (0, ) (0, ) (0, ) (0, )

2 0 0
                                                                      2 2

s A s BL H L H H

s s

d d d
U U U U U

ds ds ds

D U Fd U Ud

 

 

    

 

     

  
 .   (24) 

Integration with respect to the temporal variable (which is now set to be s ) from 0s   
to s    , yields 



2 1 22 1

2 2 2 2 22 2

(0, ) (0, ) (0, )(0, ) (0, )

2 0 0 0 0
                                                     2 2

A BL H HL H

s s

U U U U U

D U Fd ds U Ud ds

 

 



 

 

   

 

    

   
.       (25) 

Using Cauchy-Schwarz inequality for the integrals at the r.h.s. of (25) leads to 

 

2 1 22 1

1 2 2 2

2 2 2 2 2

(0, ) (0, ) (0, )(0, ) (0, )

2 (0, ) (0, ) (0, ) (0, )0 0
                 2 2

L H HL H

s sH L L L

U U U U U

D C U F ds C U U ds

 

 

   

   

    

 
 ,   (26) 

where 2 2 2 2( , ) 1/ min 1, ,A B A BC C         . Using inequality 2 22     for real 

positive numbers we get 

   
21

1 2 2 2

2 2

(0, )(0, )

2 2 2 22
2(0, ) (0, ) (0, ) (0, )0 0

              

HH

s sH L L L

U U

C U D F ds C U U ds



 



   

 

   
 . (27) 

and applying Gronwall’s lemma 

2 2 21

2 2 22
2(0, ) (0, ; (0, ))(0, )

CJ

H L J LH
U U D Ce F  

   .    (28) 

Integrating with respect to time in (0, )J  

2 2 2 22 1

2 2 22
2(0, ; (0, )) (0, ; (0, ))(0, ; (0, ))

CJ

L J H L J LL J H
U U D CJe F  

  .                   (29) 

Taking square roots and using norm equivalence in 2 , yields 

2 2 2 22 1 (0, ; (0, )) (0, ; (0, ))(0, ; (0, )) L J H L J LL J H
U U c F  

   , 2 2 CJc D CJe .   (30)  

If , 1A B   , it is 1C   and /2Jc e . However, if 1A   or 1B  , notice that 
2

,( ) /21
,

A B J
A Bc e  . Typically it is 

2
, 1A B   and the exponential growth of the constant c  

becomes extremely rapid. A somewhat more elaborate analysis yields an improved 
constant for the desired stability estimate. In particular, working in the same spirit as in 
[41], great care has been exercised in order to avoid any exponential dependence of the 

stability constants upon quantities of the form 1
A
  or 1

B
  or the Biot number Bi  when 

, 1A B    or in cases where Bi 1 . In the following, a stability result with a constant 

that exhibits only linear growth with 1 1A
   will be derived. For that purpose the first 

step is to slightly modify the norms used for the stability estimate and then make use 



Young’s inequality in the form 2 1 22     ,    , for real positive numbers 

,  , selecting appropriately the value for  . We begin with the following definition: 

Definition For any set of real positive numbers k , k  we introduce the spaces 

(0, )k
k H   , 1, 2,3,...k    and 2

0 (0, )L   , equipped with the norm 

1

2 2 22

(0, ) (0, )k k
k

kH H
u u u  

 , k  .    (31) 

It can be easily verified that the norms defined in eq. (31), are equivalent to the standard 

norms in ( )kH   i.e. 
(0, ) (0, )k k

k
k kH H

c u u C u
  
  , k  and   min 1,k kc   and 

 max 1,k kC  . 

Finally, it is by definition 2
21

2 2 2

(0, )
( ; , )A B L

E U U U  
 

    . We may now prove 

the following  

  

THEOREM 1 Let (0,1)A   and assume that the solution of variational problem (15), 

(16) with 1 0D   is sufficiently regular. Then it is 

2 2 22
21

1
2(0, ; ) (0, ; (0, ))(0, ; )

2 J
AL J L J LL J

U U D Je F 
 

  ,      (32) 

Proof  Using the same steps as previously, one easily gets 

2 1 22 1

1 2 2 2

2 2 2 2 22 2

(0, ) (0, ) (0, )(0, ) (0, )

2 (0, ) (0, ) (0, ) (0, )0 0
                    2 2

A BL H HL H

s sH L L L

U U U U U

D U F ds U U ds

 

 

 
   

   

    

 
 .  (33) 

From this point on, the analysis follows a different path. Invoking the definition of the 

k , 1, 2k    norms in order to group the terms in the l.h.s. of (33) and using Young’s 

inequality, with 2
A   , it is 

 1 2 2 2
21

2 2 2 2 2 22 2 2
2(0, ) (0, ) (0, ) (0, )0 A s A sH L L L

U U U D F U U ds


  
    

      . (34) 

For the r.h.s. of (34), we may write 

 
 

1 2 2 2

2
1 2

2 2 2 22 2 2
2(0, ) (0, ) (0, ) (0, )0

2 2 22 2
2 (0, )0 0

                                       

A s A sH L L L

s A L

U D F U U ds

U U ds D F ds



 

 




   


  

   

 



 
, (35) 

 Application of Gronwall’s lemma yields 



2 2
21

2 2 2 22 2 2 2
2 2(0, ) (0, ;(0, ))0

J
A AL L J

U U e D F ds e D F


   
  

    ,    (36) 

Integrating again with respect to    

2 2 22
21

2 2 22 2
2(0, ; ) (0, ; (0, ))(0, ; )

J
AL J L J LL J

U U Je D F 
 

   .   (37) 

Taking now square roots and using the norm equivalence in 2 , we arrive at (32).   □ 

REMARK. Observe that in this case it is 1 /2J
Ac e and the dependence of the stability 

constant on the large term 1
A
  is only linear and not exponential. Furthermore, note 

that in this case the stability constant does not depend on B . Finally, let us mention, 

that an analogous procedure may be used to derive energy norm error estimates for the 
finite element method. The derivation of these estimates will be the subject of a future 
work. 

  

6. The fully coupled system 

In this section, an a priori stability result for the weak solution of the fully coupled 
thermoelastic problem will be derived. The estimate presented here is sharper than that 
obtained in [42].  

THEOREM 2 Let 2 1/ 0D D    and assume that the solution of variational problem 

(15), (16) is sufficiently regular.  Then it is 

2 2 2 2 1 *
1 2(0, ; ) (0, ; ) (0, ; (0, )) (0, )

Bi 3 J
s L J L J L J L H

U U J e


 
   
     .   (38) 

Proof Set     in (15) and v U  in (16). Multiply equation (15) by   , add (15) to 

(16) and note the resulting mutual cancelation of the coupling terms 

1 0
D U d 



  and 2 0
D v d 


  .     (39) 

The variational equation now reads 

2 2

0 0 0 0

2

0 0
    Bi (0, ) Bi ( / ) , ( )

A B

p

U U d U U d U U d U U d

d d f c

   

 

  

         

   
 

       

  

     

         
 , (40) 

where ,   denotes the pairing between 1(0, )H   and its dual space 1 *(0, )H  . In fact, 

as will be shown later, the Dirac function ( )   is smoother than required for the duality 



pairing to make sense in this 1D setting. Adding the term 
0

U Ud 


  to both sides of 

eq. (40), we may write, since 1f  , 

2 1 2 1 2

2 1

1
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 ,    (41) 

where   22 ( )( )
,

LL
u u u





  denotes the   - weighted 2L  inner product. 

Using Cauchy-Schwarz inequality for the duality pairing, the definitions of the norms 

in spaces 1  and 2  and modified Young’s inequality with 1   for the second 

integral in the r.h.s. of (41) we arrive at 

2
1 2

1 1 * 1
1 2

2 2 2

(0, )

2 2 2

(0, ) (0, ) (0, )
          2Bi

s L

sH H H

d
U U

ds

U U



  

  

    

     

     
,      (42) 

Employing again the modified Young’s inequality with Bi    and since by 

definition it is 1 2 1

2 2 2

(0, ) (0, ) (0, )H L H  
      , we have 

1 * 1 1 1 * 2

2 2 2 2 22 2 2 2

(0, ) (0, ) (0, ) (0, ) (0, )
Bi Bi

H H H H L
     

    
         .    (43) 

Using this last inequality in conjunction with (41), integrating with respect to time from 
0s   to s   and applying Gronwall’s lemma, we finally arrive at 

                   
2 1 *

21

2 2 2 22 2

(0, ) (0, )
Bi J

L H
U U J e


  

  
     ,            (44)  

Integrating again with respect to time from 0   to J  , taking square roots and 

using the norm equivalence in 3  we get estimate (38).                                              □ 

 

7. Semi-discretization with Finite Elements and time integration 

Let us now introduce appropriate finite element spaces for conforming discretization of 
the variational problem (15), (16). A first step is the approximation of the infinite 
domain (0, )  with a finite one (0, ( ))L J , where the end point is selected such that 

conditions at infinity hold approximately in ( )L J   for J  . A similar procedure 

has been adopted in [43] for the solution of a Cauchy problem of nonlinear, classical 



thermoelasticity. For the approximation of the temperature field we select 
1(0, )hV H L  , such that for each fixed (0, ]J  , it is ( )h hV   , where h  is the 

characteristic mesh size. Similarly, for the approximation of the displacement field we 

have 2( ) (0, )h h
UU V H L   . The discretized variational problem becomes 

Find ,h hU  such that 

0 0

1 0

Bi (0) (0, )

                                        (0)Bi ( / )

L Lh h h h h h

L h h h
p

d d

D U d f c
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  

 


,            (45) 

a.e. in (0, )J  for every h hV   and 
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0 0 0

2
20 0

                          0
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L Lh h h h
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v U d v U d v U d

v U d D v d
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 

   

  
 

,   (46) 

a.e. in (0, )J  for every h h
Uv V . 

The selected finite element approximations feature 5th order Hermite polynomials for 
the approximation of the displacement field and quadratic Lagrange shape functions for 
the approximation of the temperature. The respective finite element spaces are defined, 
for (0, )J   random but fixed, as 

3
1

1

(0, ): ( ) ( )h h h h
i ie

i

V w H L w L x w 


 
   
 

 , and   (47) 

6
2

1

(0, ): ( ) ( )h h h h
U i ie

i

V w H L w H x w 


 
   
 

 .   (48) 

Note that in order to formulate conforming finite element approximations the use of 
Hermite interpolation polynomials is necessary, as the weak solution for the 

displacements has been found to be in 2 (0, )H   for each (0, )J   and thus higher 

regularity that that yielded by Lagrange interpolation polynomials is needed. 

Finally, it is worth noting that similar combinations of 0C (temperature field) and 1C
(gradient elastic displacement field) have also been applied other coupled field 
problems, as for example the simulation of the hydroelastic response of thin flexible 
strips subjected to long water wave excitation [44]. 

Discretization in space with finite elements produces a system of Ordinary Differential 
Equations (ODEs) to be integrated with respect to time. This system has the form 



   My Cy Ky F ,                                             (49) 

where y  is the vector on nodal unknowns , ,h h h
i i iU U  , and subscript i  ranges over all 

the mesh nodes. Introducing the vector v y  system (49) is transformed to the first 

order in time system 





        
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yI O O I y 0

vO M K C v F
.                                 (50) 

For a time step 0  , selected such that it is /J n  , n , the time integration of 
system (50) is performed with the general scheme, 

1( ) ( )n na a  A z B z f ,                                              (51) 

where, for a parameter [0,1]a , it is 
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 . 

The cases 0,1/ 2,1a  correspond to the Explicit Euler, Crank-Nicolson and Implicit 

Euler method respectively. The explicit scheme for 0a   is not unconditionally stable 
and therefore it will not be considered in the following. The Crank-Nicolson scheme is 
second order accurate and A-stable but not L-stable. Finally, the Implicit Euler method 
has excellent stability properties but is only first order accurate. In the following 
analysis, the value 0.52a   has been considered. This value is selected in order to 
introduce an amount of numerical dissipation to the solution. Note that when 0.5a  , 
the classical elasticity solution exhibits spurious oscillations near sharp fronts when 
relatively coarse time stepping is employed. A more detailed discussion of this 
phenomenon will be presented in the following section.            



 

Figure 3. Thermoelastic element shape functions. The element features 5th order 
Hermite polynomials for the approximation of the displacement field and quadratic 

Lagrange shape functions for the approximation of the temperature. 

 

8. Results and discussion 

The problem of thermal shock response for the gradient elastic half-space is solved for 
two different values of the Biot Number, Bi 1  and Bi   . The latter value 
corresponds to the application of a Dirichlet condition on the upper surface of the half 

space, such that the temperature at this point attains the value   immediately at time 

0  , as also discussed in previous sections. In both cases we set ( 0)f  H , 

where   is set to unity in eq. (5). The numerical solution for the displacement field is 

obtained by discretizing the region, [0, ]L  where ( )L L J    is properly selected so 

as to avoid any wave reflections at L  in the time interval examined.  

In the present study, we examine the effects of the relative magnitude of the 

(nondimensional) microstructural parameters 1 / 3A H    and 1
B g   , 

controlling micro-inertia and strain gradient effects, respectively, on the mechanical 
behavior of the material under thermal shock conditions. Estimates relating the gradient 
parameters H  and g  with the geometrical characteristics of the material microstructure 

can be found in [4, 18]. In particular, Shodja et al. [18] showed, via an atomistic 



approach, that for several metallic materials and different crystalline structures (fcc or 
bcc), the characteristic lengths range from about 2 Å to 5 Å. Given that for typical 
metals (e.g. aluminum, copper, lead, titanium, and steel) and some ceramic materials 
(e.g. silica) the thermoelastic length   is of the order of 10Å (at 300K) (see e.g. [45]), 

the values for the nondimensional parameters A  and B   range from 0.1 to 0.5. The 

material properties selected are typical for ceramic refractories and in particular are set 

to: 33 /k W mK , 34000 /kg m  , 755 /ec J kgK , 14.6 6a e K   , 
2416 9 /E e N m , 0.23v  .  

The solution is obtained for both the fully and weakly coupled systems. Several 
numerical tests have been performed in order to evaluate the convergence 
characteristics of the proposed method. A sequence of finite element meshes is 

considered. The number of finite elements elN  employed for the solution is increased 

as 100,200,400,800,1600elN  . In all cases we select the number of time steps tN  to 

be twice the number of the elements ( 2t elN N ). Finally, a numerical experiment with 

2500 elements and 10000 time steps was performed to be used as a highly accurate 
numerical solution. 

 

 

Figure 4. Convergence characteristics of the proposed finite element procedure. Both 
the temperature and the displacement approximation error are plotted for Bi 1 . Both 

axes are in logarithmic scale. 

 

An example of the convergence characteristics of the finite element procedure are 
shown in figure (4) for Bi 1 . Both axes in figure 4 are in logarithmic scale. The 



solution obtained with 1600 elements was considered to be the ‘exact solution’. As an 
error indicator, the following quantity has been selected 

[0, ], [0, ]

[0, ], [0, ]

max ( 1600) ( )

max ( 1600)
i j

el

i j

el el
L J

N
el

L J

solution N solution N
e

solution N

 

 

 

 

 



.                   (52) 

The maximum difference is calculated over all nodal values of the displacement field 
and over all discrete time instances. The convergence of the displacement field Finite 
Element solution is more rapid that of the temperature field. This is attributed to the 
higher order approximation used for the displacements. Finally, the error values are 
almost identical for the fully coupled and weakly coupled systems for the considered 
material parameters. This is due to the small contribution of the coupling term in 
equation (9).   

 

 

Figure 5. Space - time plot of the displacement field in the fully coupled case inside 
the gradient elastic half-space for different values of the microstructural parameters λA 

and λΒ and Bi     Classical elasticity corresponds to the case λA = λΒ =0. 

 

Figure 5 presents a space - time plot of the displacement field inside the gradient elastic 
half-space for different values of the microstructural parameters λA and λΒ (fully 

coupled system). Classical elasticity corresponds to the case 0A B   . The results 

are obtained with 2500 elements and 10000 time steps. The dispersive nature of the 



thermoelastic pulse in the case that 0.1, 0.3A B    and 0.3, 0.1A B    can be 

seen around the pulse traveling front. 

Figure 6 illustrates the difference between the solutions of the fully and weakly coupled 
system. The difference relative to the maximum value attained by the numerical 

solution of the fully coupled system (denoted in figure 9 as f/c f/c
[0, ], [0, ]

||| ||| max
i j

h h

L J
U U

  
  ) 

is plotted. This difference is found to be several orders of magnitude less than the 
maximum amplitude of the thermoelastic pulse.  Thus, the fully coupled and weakly 
coupled systems yield almost identical results for the considered (ceramic refractory) 
material. 

Let us now study the response of the weakly coupled system. The energy balance for 
the solution, as dictated by equation (22), is plotted in Figures 6 and 7, for Bi 1  and 
Bi    respectively. In the latter case, the bound dictated by inequality (32), is also 
computed. Invoking inequality (32) and using the analytical evaluation of the 

2 2(0, ; (0, ))L L   norm of the temperature field solution of the heat transfer problem in 

the half-space cause by a sudden change in the temperature of its boundary, we have   

2 2

2 3/2

(0, ; (0, ))

4(2 2)
( , )

3L L
F s


 




 ,     (53) 

where  ( , ) erfc / 2F s s  , [28, 29].  In that manner, we obtain an explicit bound 

for the quantity 2
21

2 2 2

(0, )
( )

L L
E U U U


  , where 1 2,   and the induced norms 

are now defined over the interval (0, )L . along with the bound derived from inequality 

(36) and equation (53). The energy balance for the solution in all cases is verified as 
, 0h   , where   denotes the time step. 

    



 

Figure 6. Displacement field solution difference between the fully and weakly 
coupled systems.  

 

Figures 9 and 10 are plots of the displacement solution for Bi 1  and Bi    
respectively, for the weakly coupled system. In both cases three different combinations 
of the microstructural parameters are selected. The displacement field is plotted as a 
function of the spatial parameter at three time instances ( 5,10,25  ). The classical 

elasticity solution ( 0A B   ) is also plotted. From comparison between Figures 9 

and 10 it is observed that the solution is of lower amplitude for small values of the Biot 
number. The dispersive nature of pulses characterizing gradient elasticity solutions is 
evident for the cases where the microstructural parameters are dissimilar. Normal 

dispersion is exhibited in the case where A B  , while anomalous dispersion occurs 

when A B  . The case ( 0.2A B   ) shows almost zero dispersion. This is in 

accordance with the dispersion analysis of gradient elastic solutions [32-35, 39]. 

Figures 11 and 12 are plots of the displacement gradient inside the half-space for Bi 1  
and Bi   , respectively. The latter case is of lower regularity for the classical 

elasticity. However, it is observed that in the case of gradient elasticity, the first 
derivative of the displacement, corresponding to the strain, is continuous. Note that in 
the case of the gradient elastic solution, the presence of higher order terms makes the 
displacement gradient smoother. 

 



 

 

Figure 7. Energy balance according to equation (22), for different values of the 
microstructural parameters λA and λΒ, for Bi 1 . 

 

 

Figure 8. Energy balance according to equation (22), for different values of the 
microstructural parameters λA and λΒ, for Bi   . The stability estimate for the 

gradient elastic solution (equation (36)) is plotted with a dashed line. 



 

Figure 9. Displacement field inside the half-space for different values of the 
microstructural parameters λA and λΒ, at three time instances. The classical elasticity 

solution is plotted against the gradient elastic one ( Bi 1 ). 

 

 

Figure 10. As in Fig. 9 but with Bi   . 



 

Figure 11. Displacement gradient inside the half-space for different values of the 
microstructural parameters λA and λΒ, at different time instances. The classical 

elasticity solution is plotted against the gradient elastic one ( Bi 1 ). 

 

 

Figure 12. As in Fig. 11 but with Bi   . 

 



 

Figure 13. Velocity inside the half-space for different values of the microstructural 
parameters λA and λΒ, at different time instances. The classical elasticity solution is 

plotted against the gradient elastic one ( Bi 1 ). 

 

 

Figure 14. As in Fig. 13 but with Bi   . 

 



 

Figure 15. Total stress (eq. (3a)) inside the half-space for different values of the 
microstructural parameters λA and λΒ, at two time instances. The classical elasticity 

solution is plotted against the gradient elastic one ( Bi 1 ). 

 

 

Figure 16. As in Fig. 15 but with Bi   . The exact solution for the stresses [see e.g. 
31], is plotted with a thin solid line. 



 

In Figures 13 and 14, the variation of the velocity inside the half-space is displayed for 
the selected values of the Biot number. Again, three different combinations of the 
microstructural parameters are selected. The velocity is plotted as a function of the 
spatial parameter at two time instances ( 5, 25  ). In classical elasticity, for Bi   ,  

the velocity suffers a finite jump at   , which implies that a shock wave (singular 

surface) travels through the material. This is in marked contrast with the gradient 
elasticity solution where the velocity is continuous and, thus, no shock waves are 
formed.  

Finally, Figures 15 and 16 show the distribution of the (total) stress, defined in Eq. (3a), 
as a function of the spatial parameter at two time instances ( 5, 25  ) for Bi 1  and 

Bi   . Examining the case Bi    it is observed that in classical elasticity, the 
monopolar stress (see references [27-31] for a closed form solution of the stress field) 
exhibits a finite discontinuity at the same point where the velocity becomes 
discontinuous. The latter observation is a direct consequence of the enforcement of the 
dynamical compatibility conditions at the singular surface [46]. On the other hand, in 
the case of gradient elasticity, the total stress remains spatially continuous at all 
instances. The oscillations appearing before or after the pulse front, at   , are the 

result of the dispersive nature (normal or anomalous) characterizing the gradient 
elasticity solution. 

It is interesting to examine the time profile of the displacement gradient at the free 
surface of the half space. Figures 17 and 18 depict the displacement gradient for 0   

in the case that Bi 1  and Bi    respectively. In the former case, namely when Bi 1  
(Figure 17), the strain at the free surface is a continuous function of time. For the 
classical elasticity, the strain constantly increases (with decreasing rate) approaching 
asymptotically a certain value. In the gradient elastic case, and particular in the cases 

0.2A B    and 0.3, 0.1A B   , the increase in not monotone and the solution 

oscillates, while increasing to the asymptotic limit. In all cases, for large values of the 
temporal variable, the gradient elasticity solution is of lower magnitude than that of the 
classical elasticity case. In particular, it is observed that as the microstructural 
parameter B  increases the material becomes stiffer. 

The case Bi    is more interesting. In this case, the temperature at 0   changes 

instantly form oT  to T   at 0  . For the classical elasticity case, since the traction 

2U D    at the free surface of the half-space is zero, the strain U  features a finite 

jump at 0  . The dashed black line for 0A B   , corresponding to classical 

elasticity, presents this situation. The numerical solution features spurious oscillations 
which reduce in magnitude near this discontinuity at 0  . In the gradient elastic case, 

where the zero traction condition at the free surface of the half-space is 



2 2
2 0A BU U U D        , the strain is continuous despite the fact that the 

temperature features a discontinuity.    

 

 

Figure 17. Displacement gradient at the free surface of the half-space as a function of 
time, for Bi 1 .   

 

 

 

Figure 18. Displacement gradient at the free surface of the half-space as a function of 
time, for Bi   .  



9. Conclusions 

The thermal shock behavior of complex microstructured materials such as advanced 
ceramics, cellular materials, and foams is a problem of growing interest since their high 
performance properties are closely related to their reliability under changing thermal 
conditions. The present study extends the analysis of Danilovskaya [27, 28], where a 
thermal shock acts on a classical elastic half space, to a microstructured material 
modelled with gradient thermoelasticity. It is noted that due to the complexity of the 
equations of gradient thermoelasticity, very few solutions to benchmark initial-
boundary value problems, such as the present one, exist in the literature. Special 
thermoelastic finite elements have been developed for the simulation of the response of 
a gradient elastic half-space subjected to thermal shock on its boundary. The Partial 
Differential Equations governing the phenomenon under consideration have been 
solved for different values of the microstructural parameters. The solution for a classical 
thermoelastic solid is obtained as a special case. Energy type stability estimates for the 
weak solution have been obtained for the fully coupled thermoelastic system as well as 
for the weakly coupled. The adopted finite element scheme performed well in all 
numerical experiments conducted. An important result obtained in the present study is 
that the displacement and strain fields induced by the thermoelastic shock are smoother 
(no kinks in displacements or discontinuities in strains) than the ones predicted by 
classical thermoelasticity. In addition, the thermoelastic pulse is of dispersive nature, 
as is typically the case for waves in gradient elastic solids. Normal or anomalous 
dispersion characteristics are observed depending on the values of the gradient 
parameters. Finally, we note that the differences between the solution of the fully 
coupled thermoelastic system and the weakly coupled have been found to be negligible 
for the material properties selected.  
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