7,884 research outputs found
Sub-Optimal Allocation of Time in Sequential Movements
The allocation of limited resources such as time or energy is a core problem that organisms face when planning complex
actions. Most previous research concerning planning of movement has focused on the planning of single, isolated
movements. Here we investigated the allocation of time in a pointing task where human subjects attempted to touch two
targets in a specified order to earn monetary rewards. Subjects were required to complete both movements within a limited time but could freely allocate the available time between the movements. The time constraint presents an allocation
problem to the subjects: the more time spent on one movement, the less time is available for the other. In different
conditions we assigned different rewards to the two tokens. How the subject allocated time between movements affected
their expected gain on each trial. We also varied the angle between the first and second movements and the length of the
second movement. Based on our results, we developed and tested a model of speed-accuracy tradeoff for sequential
movements. Using this model we could predict the time allocation that would maximize the expected gain of each subject
in each experimental condition. We compared human performance with predicted optimal performance. We found that all
subjects allocated time sub-optimally, spending more time than they should on the first movement even when the reward
of the second target was five times larger than the first. We conclude that the movement planning system fails to maximize
expected reward in planning sequences of as few as two movements and discuss possible interpretations drawn from
economic theory
Pasta-making properties of the new durum wheat variety biensur suitable for the northern mediterranean environment
Industrial pasta is commonly made from mixtures of semolina from different durum wheat varieties, and there is a very low market presence of mono-varietal pasta from local, short supply chains. In this work, dough rheological properties and pasta quality traits of the new durum wheat cv. Biensur, which has a high HMW/LMW-GS ratio, were evaluated with a view to developing short-chain, mono-varietal pasta production in NE Italy. Chemical and sensory analyses on short-cut pasta, viz. tubetti, made with semolina from cv. Biensur at two drying temperatures revealed that it has good technological characteristics and stability, excellent cooking and sensory properties, and is comparable to the high-quality commercial reference cv. Aureo. We conclude that Biensur provides farmers and traders with new market opportunities and offers improvements to the environmental and economic sustainability of the durum wheat chain
On the Taylor expansion of probabilistic \u3bb-terms
We generalise Ehrhard and Regnier\u2019s Taylor expansion from pure to probabilistic \u3bb-terms. We prove that the Taylor expansion is adequate when seen as a way to give semantics to probabilistic \u3bb-terms, and that there is a precise correspondence with probabilistic B\uf6hm trees, as introduced by the second author. We prove this adequacy through notions of probabilistic resource terms and explicit Taylor expansion
Magnetic Field Effects on the Head Structure of Protostellar Jets
We present the results of 3-D SPMHD numerical simulations of
supermagnetosonic, overdense, radiatively cooling jets. Two initial magnetic
configurations are considered: (i) a helical and (ii) a longitudinal field. We
find that magnetic fields have important effects on the dynamics and structure
of radiative cooling jets, especially at the head. The presence of a helical
field suppresses the formation of the clumpy structure which is found to
develop at the head of purely hydrodynamical jets. On the other hand, a cooling
jet embedded in a longitudinal magnetic field retains clumpy morphology at its
head. This fragmented structure resembles the knotty pattern commonly observed
in HH objects behind the bow shocks of HH jets. This suggests that a strong
(equipartition) helical magnetic field configuration is ruled out at the jet
head. Therefore, if strong magnetic fields are present, they are probably
predominantly longitudinal in those regions. In both magnetic configurations,
we find that the confining pressure of the cocoon is able to excite
short-wavelength MHD K-H pinch modes that drive low-amplitude internal shocks
along the beam. These shocks are not strong however, and it likely that they
could only play a secondary role in the formation of the bright knots observed
in HH jets.Comment: 14 pages, 2 Gif figures, uses aasms4.sty. Also available on the web
page http://www.iagusp.usp.br/preprints/preprint.html. To appear in The
Astrophysical Journal Letter
- …