41 research outputs found
Population Genetic Differences along a Latitudinal Cline between Original and Recently Colonized Habitat in a Butterfly
BACKGROUND: Past and current range or spatial expansions have important consequences on population genetic structure. Habitat-use expansion, i.e. changing habitat associations, may also influence genetic population parameters, but has been less studied. Here we examined the genetic population structure of a Palaeartic woodland butterfly Pararge aegeria (Nymphalidae) which has recently colonized agricultural landscapes in NW-Europe. Butterflies from woodland and agricultural landscapes differ in several phenotypic traits (including morphology, behavior and life history). We investigated whether phenotypic divergence is accompanied by genetic divergence between populations of different landscapes along a 700 km latitudinal gradient. METHODOLOGY/PRINCIPAL FINDINGS: Populations (23) along the latitudinal gradient in both landscape types were analyzed using microsatellite and allozyme markers. A general decrease in genetic diversity with latitude was detected, likely due to post-glacial colonization effects. Contrary to expectations, agricultural landscapes were not less diverse and no significant bottlenecks were detected. Nonetheless, a genetic signature of recent colonization is reflected in the absence of clinal genetic differentiation within the agricultural landscape, significantly lower gene flow between agricultural populations (3.494) than between woodland populations (4.183), and significantly higher genetic differentiation between agricultural (0.050) than woodland (0.034) pairwise comparisons, likely due to multiple founder events. Globally, the genetic data suggest multiple long distance dispersal/colonization events and subsequent high intra- and inter-landscape gene flow in this species. Phosphoglucomutase deviated from other enzymes and microsatellite markers, and hence may be under selection along the latitudinal gradient but not between landscape types. Phenotypic divergence was greater than genetic divergence, indicating directional selection on some flight morphology traits. MAIN CONCLUSIONS/SIGNIFICANCE: Clinal differentiation characterizes the population structure within the original woodland habitat. Genetic signatures of recent habitat expansion remain, notwithstanding high gene flow. After differentiation through drift was excluded, both latitude and landscape were significant factors inducing spatially variable phenotypic variation
Cerebellar Degeneration Increases Visual Influence on Dynamic Estimates of Verticality
Our perception of verticality relies on combining sensory information from multiple sources. Neuronal recordings in animals implicate the cerebellum in the process, yet disease of the human cerebellum was not found to affect this perception. Here we show that a perceptual disturbance of verticality is indeed present in people with a genetically determined and pure form of cerebellar degeneration (spinocerebellar ataxia type 6; SCA 6), but is only revealed under dynamic visual conditions. Participants were required to continuously orient a visually displayed bar to vertical while the bar angle was perturbed by a low-frequency random signal and a random dot pattern rotated in their visual periphery. The random dot pattern was rotated at one of two velocities (4°/s and 16°/s), traveling with either coherent or noisy motion. Perceived vertical was biased by visual rotation in healthy participants, particularly in a more elderly group, but SCA 6 participants were biased more than both groups. The bias was reduced by visual noise, but more so for SCA 6 participants than young controls. Distortion of verticality by visual rotation stems from the stimulus creating an illusion of self-rotation. We modeled this process using a maximum-likelihood sensory cue-combination model operating on noisy visual- and vestibular-rotation signals. The observed effects of visual rotation and visual noise could be compellingly explained by cerebellar degeneration, and to a lesser extent aging, causing an increase in central vestibular noise. This is consistent with the human cerebellum operating on dynamic vestibular signals to inform the process that estimates which way is up
Electrical vestibular stimuli to enhance vestibulo-motor output and improve subject comfort
Electrical vestibular stimulation is often used to assess vestibulo-motor and postural responses in both clinical and research settings. Stochastic vestibular stimulation (SVS) is a recently established technique with many advantages over its square-wave counterpart; however, the evoked muscle responses remain relatively small. Although the vestibular-evoked responses can be enhanced by increasing the stimulus amplitude, subjects often perceive these higher intensity electrical stimuli as noxious or painful. Here, we developed multisine vestibular stimulation (MVS) signals that include precise frequency contributions to increase signal-to-noise ratios (SNR) of stimulus-evoked muscle and motor responses. Subjects were exposed to three different MVS stimuli to establish that: 1) MVS signals evoke equivalent vestibulo-motor responses compared to SVS while improving subject comfort and reducing experimentation time, 2) stimulus-evoked vestibulo-motor responses are reliably estimated as a linear system and 3) specific components of the cumulant density time domain vestibulo-motor responses can be targeted by controlling the frequency content of the input stimulus. Our results revealed that in comparison to SVS, MVS signals increased the SNR 3-6 times, reduced the minimum experimentation time by 85% and improved subjective measures of comfort by 20-80%. Vestibulo-motor responses measured using both EMG and force were not substantially affected by nonlinear distortions. In addition, by limiting the contribution of high frequencies within the MVS input stimulus, the magnitude of the medium latency time domain motor output response was increased by 58%. These results demonstrate that MVS stimuli can be designed to target and enhance vestibulo-motor output responses while simultaneously improving subject comfort, which should prove beneficial for both research and clinical applications.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin
The MAPS reporting statement for studies mapping onto generic preference-based outcome measures: Explanation and elaboration
Background: The process of “mapping” is increasingly being used to predict health utilities, for application within health economic evaluations, using data on other indicators or measures of health. Guidance for the reporting of mapping studies is currently lacking. Objective: The overall objective of this research was to develop a checklist of essential items, which authors should consider when reporting mapping studies. The MAPS (MApping onto Preference-based measures reporting Standards) statement is a checklist, which aims to promote complete and transparent reporting by researchers. This paper provides a detailed explanation and elaboration of the items contained within the MAPS statement. Methods: In the absence of previously published reporting checklists or reporting guidance documents, a de novo list of reporting items and accompanying explanations was created. A two-round, modified Delphi survey, with representatives from academia, consultancy, health technology assessment agencies and the biomedical journal editorial community, was used to identify a list of essential reporting items from this larger list. Results: From the initial de novo list of 29 candidate items, a set of 23 essential reporting items was developed. The items are presented numerically and categorised within six sections, namely, (i) title and abstract, (ii) introduction, (iii) methods, (iv) results, (v) discussion and (vi) other. For each item, we summarise the recommendation, illustrate it using an exemplar of good reporting practice identified from the published literature, and provide a detailed explanation to accompany the recommendation. Conclusions: It is anticipated that the MAPS statement will promote clarity, transparency and completeness of reporting of mapping studies. It is targeted at researchers developing mapping algorithms, peer reviewers and editors involved in the manuscript review process for mapping studies, and the funders of the research. The MAPS working group plans to assess the need for an update of the reporting checklist in 5 years’ time