762 research outputs found

    On the Creation of Acceptable Conjoint Analysis Experimental Designs

    Full text link
    Conjoint analysis studies typically utilize orthogonal fractional factorial experimental designs to construct a set of hypothetical stimuli. Occasionally, these designs include environmentally correlated attributes that can lead to stimulus profiles that are not representative of the subject's environment. To date, no one has proposed a remedy well-grounded in statistical theory. This note presents a new methodology utilizing combinatorial optimization procedures for creating modified fractional factorial designs that are as “orthogonal” as possible, which do not contain nonrepresentative stimulus profiles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72641/1/j.1540-5915.1991.tb00357.x.pd

    Macrophage Sub-Populations and the Lipoxin A4 Receptor Implicate Active Inflammation during Equine Tendon Repair

    Get PDF
    Macrophages (Mϕ) orchestrate inflammatory and reparatory processes in injured connective tissues but their role during different phases of tendon healing is not known. We investigated the contribution of different Mϕ subsets in an equine model of naturally occurring tendon injury. Post mortem tissues were harvested from normal (uninjured), sub-acute (3–6 weeks post injury) and chronically injured (>3 months post injury) superficial digital flexor tendons. To determine if inflammation was present in injured tendons, Mϕ sub-populations were quantified based on surface antigen expression of CD172a (pan Mϕ), CD14highCD206low (pro-inflammatory M1Mϕ), and CD206high (anti-inflammatory M2Mϕ) to assess potential polarised phenotypes. In addition, the Lipoxin A4 receptor (FPR2/ALX) was used as marker for resolving inflammation. Normal tendons were negative for both Mϕ and FPR2/ALX. In contrast, M1Mϕ predominated in sub-acute injury, whereas a potential phenotype-switch to M2Mϕ polarity was seen in chronic injury. Furthermore, FPR2/ALX expression by tenocytes was significantly upregulated in sub-acute but not chronic injury. Expression of the FPR2/ALX ligand Annexin A1 was also significantly increased in sub-acute and chronic injuries in contrast to low level expression in normal tendons. The combination of reduced FPR2/ALX expression and persistence of the M2Mϕ phenotype in chronic injury suggests a potential mechanism for incomplete resolution of inflammation after tendon injury. To investigate the effect of pro-inflammatory mediators on lipoxin A4 (LXA4) production and FPR2/ALX expression in vitro, normal tendon explants were stimulated with interleukin-1 beta and prostaglandin E2. Stimulation with either mediator induced LXA4 release and maximal upregulation of FPR2/ALX expression after 72 hours. Taken together, our data suggests that although tenocytes are capable of mounting a protective mechanism to counteract inflammatory stimuli, this appears to be of insufficient duration and magnitude in natural tendon injury, which may potentiate chronic inflammation and fibrotic repair, as indicated by the presence of M2Mϕ

    Histopathological and immunohistochemical evaluation of cellular response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch for tendon repair

    Get PDF
    We investigated endogenous tissue response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch intended for tendon repair. A sheep tendon injury model characterised by a natural history of consistent failure of healing was chosen to assess the biological potential of woven and aligned electrospun fibres to induce a reparative response. Patches were implanted into 8 female adult English Mule sheep. Significant infiltration of tendon fibroblasts was observed within the electrospun component of the patch but not within the woven component. The cellular infiltrate into the electrospun fibres was accompanied by an extensive network of new blood vessel formation. Tendon fibroblasts were the most abundant scaffold-populating cell type. CD45+, CD4+ and CD14+ cells were also present, with few foreign body giant cells. There were no local or systemic signs of excessive inflammation with normal hematology and serology for inflammatory markers three months after scaffold implantation. In conclusion, we demonstrate that an endogenous healing response can be safely induced in tendon by means of biophysical cues using a woven and electrospun patch

    Physical Activity Levels of Patients Undergoing Bariatric Surgery in the Longitudinal Assessment of Bariatric Surgery (LABS) Study

    Get PDF
    Background- Bariatric surgery candidates' physical activity (PA) level may contribute to the variability of weight loss and body composition changes following bariatric surgery. However, there is little research describing the PA of patients undergoing bariatric surgery to inform PA recommendations in preparation for, and following, surgery. Objectives- Describe PA assessment in the LABS-2 study and report pre-surgery PA level. Examine relationships between objectively determined PA level and 1) BMI and 2) self-reported purposeful exercise. Setting- Six sites in the U.S. Methods- Participants wore an accelerometer and completed a PA diary. Standardized measures of height and weight were obtained. Results- Of 757 participants, 20% were sedentary (<5000 steps/day), 34% low active (5000-7499 steps/day), 27% somewhat active (7500-9999 steps/day), 14% active (10000-12499 steps/day), and 6% were highly active (greater than or equal to 12500 steps/day). BMI was inversely related to mean steps/day and mean steps/minute during the most active 30 minutes each day. The most commonly reported activities were walking, 44%; gardening, 11%; playing with children, 10%; and stretching, 7%. Self-report of minutes of exercise accounted for 2% of the variance in objectively determined steps. Conclusion- Patients present for bariatric surgery with a wide range of PA levels, with almost half categorized as somewhat active or active. BMI is inversely related to total amount and intensity of PA. Few patients report a regular pre-operative exercise regimen suggesting most PA is accumulated from activities of daily living. Patient report of daily minutes of walking or exercise may not be a reliable indication of their PA level. Originally published Surgery for Obesity and Related Diseases, Vol. 4, No. 6, Nov-Dec 200

    Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer.

    Get PDF
    Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter

    Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model

    Get PDF
    Abstract Background Mesenchymal stromal cells (MSC) have shown promising results in the treatment of tendinopathy in equine medicine, making this therapeutic approach seem favorable for translation to human medicine. Having demonstrated that MSC engraft within the tendon lesions after local injection in an equine model, we hypothesized that they would improve tendon healing superior to serum injection alone. Methods Quadrilateral tendon lesions were induced in six horses by mechanical tissue disruption combined with collagenase application 3 weeks before treatment. Adipose-derived MSC suspended in serum or serum alone were then injected intralesionally. Clinical examinations, ultrasound and magnetic resonance imaging were performed over 24 weeks. Tendon biopsies for histological assessment were taken from the hindlimbs 3 weeks after treatment. Horses were sacrificed after 24 weeks and forelimb tendons were subjected to macroscopic and histological examination as well as analysis of musculoskeletal marker expression. Results Tendons injected with MSC showed a transient increase in inflammation and lesion size, as indicated by clinical and imaging parameters between week 3 and 6 (p < 0.05). Thereafter, symptoms decreased in both groups and, except that in MSC-treated tendons, mean lesion signal intensity as seen in T2w magnetic resonance imaging and cellularity as seen in the histology (p < 0.05) were lower, no major differences could be found at week 24. Conclusions These data suggest that MSC have influenced the inflammatory reaction in a way not described in tendinopathy studies before. However, at the endpoint of the current study, 24 weeks after treatment, no distinct improvement was observed in MSC-treated tendons compared to the serum-injected controls. Future studies are necessary to elucidate whether and under which conditions MSC are beneficial for tendon healing before translation into human medicine

    Parametric study of EEG sensitivity to phase noise during face processing

    Get PDF
    &lt;b&gt;Background: &lt;/b&gt; The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. &lt;b&gt;Results: &lt;/b&gt; Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces. &lt;b&gt;Conclusion: &lt;/b&gt; Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses
    • 

    corecore