177 research outputs found
Decoherence Dynamics of Measurement-Induced Nonlocality and comparison with Geometric Discord for two qubit systems
We check the decoherence dynamics of Measurement-induced Nonlocality(in
short, MIN) and compare it with geometric discord for two qubit systems. There
are quantum states, on which the action of dephasing channel cannot destroy MIN
in finite or infinite time. We check the additive dynamics of MIN on a qubit
state under two independent noise. Geometric discord also follows such additive
dynamics like quantum discord. We have further compared non-Markovian evolution
of MIN and geometric discord under dephasing and amplitude damping noise for
pure state and it shows distinct differences between their dynamics.Comment: 11 pages, 10 figures, Revte
Conditions for the freezing phenomena of geometric measure of quantum discord for arbitrary two-qubit X states under non-dissipative dephasing noises
We study the dynamics of geometric measure of quantum discord (GMQD) under
the influences of two local phase damping noises. Consider the two qubits
initially in arbitrary X-states, we find the necessary and sufficient
conditions for which GMQD is unaffected for a finite period. It is further
shown that such results also hold for the non-Markovian dephasing process.Comment: 4 pages, 2 figure
Radiation Induces Diffusible Feeder Cell Factor(s) That Cooperate with ROCK Inhibitor to Conditionally Reprogram and Immortalize Epithelial Cells
Both feeder cells and Rho kinase inhibition are required for the conditional reprogramming and immortalization of human epithelial cells. In the present study, we demonstrated that the Rho kinase inhibitor Y-27632, significantly suppresses keratinocyte differentiation and extends life span in serum-containing medium but does not lead to immortalization in the absence of feeder cells. Using Transwell culture plates, we further demonstrated that physical contact between the feeder cells and keratinocytes is not required for inducing immortalization and, more importantly, that irradiation of the feeder cells is required for this induction. Consistent with these experiments, conditioned medium was shown to induce and maintain conditionally immortalized cells, which was accompanied by increased telomerase expression. The activity of conditioned medium directly correlated with radiation-induced apoptosis of the feeder cells. Thus, the induction of conditionally reprogrammed cells is mediated by a combination of Y-27632 and a diffusible factor (or factors) released by apoptotic feeder cells
New features of quantum discord uncovered by q-entropies
The notion of quantum discord introduced by Ollivier and Zurek [Phys. Rev.
Lett 88, 017901 (2001)] (see also Henderson and Vedral [J. Phys. A 34, 6899
(2001)]) has attracted increasing attention, in recent years, as an entropic
quantifier of non-classical features pertaining to the correlations exhibited
by bipartite quantum systems. Here we generalize the notion so as to encompass
power-law q-entropies (that reduce to the standard Shannon entropy in the limit
) and study the concomitant consequences. The ensuing, new
discord-like measures we advance describe aspects of non-classicality that are
different from those associated with the standard quantum discord. A particular
manifestation of this difference concerns a feature related to order. Let
stand for the standard, Shannon-based discord measure and for the one. If two quantum states , are such that , this
order-relation does not remain invariant under a change from to .Comment: 11 pages, 8 figure
A lipidomic based metabolic age score captures cardiometabolic risk independent of chronological age
Background Metabolic ageing biomarkers may capture the age-related shifts in metabolism, offering a precise representation of an individual’s overall metabolic health. Methods Utilising comprehensive lipidomic datasets from two large independent population cohorts in Australia (n = 14,833, including 6630 males, 8203 females), we employed different machine learning models, to predict age, and calculated metabolic age scores (mAge). Furthermore, we defined the difference between mAge and age, termed mAgeΔ, which allow us to identify individuals sharing similar age but differing in their metabolic health status. Findings Upon stratification of the population into quintiles by mAgeΔ, we observed that participants in the top quintile group (Q5) were more likely to have cardiovascular disease (OR = 2.13, 95% CI = 1.62–2.83), had a 2.01-fold increased risk of 12-year incident cardiovascular events (HR = 2.01, 95% CI = 1.45–2.57), and a 1.56-fold increased risk of 17-year all-cause mortality (HR = 1.56, 95% CI = 1.34–1.79), relative to the individuals in the bottom quintile group (Q1). Survival analysis further revealed that men in the Q5 group faced the challenge of reaching a median survival rate due to cardiovascular events more than six years earlier and reaching a median survival rate due to all-cause mortality more than four years earlier than men in the Q1 group. Interpretation Our findings demonstrate that the mAge score captures age-related metabolic changes, predicts health outcomes, and has the potential to identify individuals at increased risk of metabolic diseases
Information Invariance and Quantum Probabilities
We consider probabilistic theories in which the most elementary system, a
two-dimensional system, contains one bit of information. The bit is assumed to
be contained in any complete set of mutually complementary measurements. The
requirement of invariance of the information under a continuous change of the
set of mutually complementary measurements uniquely singles out a measure of
information, which is quadratic in probabilities. The assumption which gives
the same scaling of the number of degrees of freedom with the dimension as in
quantum theory follows essentially from the assumption that all physical states
of a higher dimensional system are those and only those from which one can
post-select physical states of two-dimensional systems. The requirement that no
more than one bit of information (as quantified by the quadratic measure) is
contained in all possible post-selected two-dimensional systems is equivalent
to the positivity of density operator in quantum theory.Comment: 8 pages, 1 figure. This article is dedicated to Pekka Lahti on the
occasion of his 60th birthday. Found. Phys. (2009
Dynamics of multipartite quantum correlations under decoherence
Quantum discord is an optimal resource for the quantification of classical
and non-classical correlations as compared to other related measures. Geometric
measure of quantum discord is another measure of quantum correlations.
Recently, the geometric quantum discord for multipartite states has been
introduced by Jianwei Xu [arxiv:quant/ph.1205.0330]. Motivated from the recent
study [Ann. Phys. 327 (2012) 851] for the bipartite systems, I have
investigated global quantum discord (QD) and geometric quantum discord (GQD)
under the influence of external environments for different multipartite states.
Werner-GHZ type three-qubit and six-qubit states are considered in inertial and
non-inertial settings. The dynamics of QD and GQD is investigated under
amplitude damping, phase damping, depolarizing and flipping channels. It is
seen that the quantum discord vanishes for p>0.75 in case of three-qubit GHZ
states and for p>0.5 for six qubit GHZ states. This implies that multipartite
states are more fragile to decoherence for higher values of N. Surprisingly, a
rapid sudden death of discord occurs in case of phase flip channel. However,
for bit flip channel, no sudden death happens for the six-qubit states. On the
other hand, depolarizing channel heavily influences the QD and GQD as compared
to the amplitude damping channel. It means that the depolarizing channel has
the most destructive influence on the discords for multipartite states. From
the perspective of accelerated observers, it is seen that effect of environment
on QD and GQD is much stronger than that of the acceleration of non-inertial
frames. The degradation of QD and GQD happens due to Unruh effect. Furthermore,
QD exhibits more robustness than GQD when the multipartite systems are exposed
to environment.Comment: 15 pages, 4 figures, 4 table
Geometric measure of quantum discord and the geometry of a class of two-qubit states
We investigate the geometric picture of the level surfaces of quantum
entanglement and geometric measure of quantum discord (GMQD) of a class of
X-states, respectively. This pictorial approach provides us a direct
understanding of the structure of entanglement and GMQD. The dynamic evolution
of GMQD under two typical kinds of quantum decoherence channels is also
investigated. It is shown that there exists a class of initial states for which
the GMQD is not destroyed by decoherence in a finite time interval.
Furthermore, we establish a factorization law between the initial and final
GMQD, which allows us to infer the evolution of entanglement under the
influences of the environment.Comment: 10 pages, 4 figures, comments are welcom
- …