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Summary
Background Metabolic ageing biomarkers may capture the age-related shifts in metabolism, offering a precise
representation of an individual’s overall metabolic health.

Methods Utilising comprehensive lipidomic datasets from two large independent population cohorts in Australia
(n = 14,833, including 6630 males, 8203 females), we employed different machine learning models, to predict age,
and calculated metabolic age scores (mAge). Furthermore, we defined the difference between mAge and age,
termed mAgeΔ, which allow us to identify individuals sharing similar age but differing in their metabolic health
status.

Findings Upon stratification of the population into quintiles by mAgeΔ, we observed that participants in the top
quintile group (Q5) were more likely to have cardiovascular disease (OR = 2.13, 95% CI = 1.62–2.83), had a 2.01-fold
increased risk of 12-year incident cardiovascular events (HR = 2.01, 95% CI = 1.45–2.57), and a 1.56-fold increased
risk of 17-year all-cause mortality (HR = 1.56, 95% CI = 1.34–1.79), relative to the individuals in the bottom quintile
group (Q1). Survival analysis further revealed that men in the Q5 group faced the challenge of reaching a median
survival rate due to cardiovascular events more than six years earlier and reaching a median survival rate due to
all-cause mortality more than four years earlier than men in the Q1 group.

Interpretation Our findings demonstrate that the mAge score captures age-related metabolic changes, predicts health
outcomes, and has the potential to identify individuals at increased risk of metabolic diseases.

Funding The specific funding of this article is provided in the acknowledgements section.
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Introduction
Over recent decades, the human lifespan has steadily
increased. However, health span – years lived free of
disease – has not experienced a commensurate growth.
Consequently, age-rated diseases, along with their
associated morbidity and mortality, have now become a
global challenge.1

Longevity research2,3 has started to focus on under-
standing the biological mechanisms underlying the
ageing process, with the ultimate goal of enhancing
the healthspan.4 This has led to the introduction of the
concept of ‘biological ageing’, a quantitative and tangible
measurement of ageing that captures an individual’s
physiological status.5 Driven by the availability of large-
scale omics data, multiple molecular ageing biomarkers
have emerged, including epigenetic age,6–9 transcriptomic
age,10–12 proteomic age,13–15 and metabolic age.16–19 These
ageing signatures are often produced using machine/
deep learning methods, most commonly variants of
penalised linear models, gradient boosting tree, random
forest, and neural networks. Previous studies have
compared biological ages derived from different molec-
ular features, revealing only mild correlations between
them.20,21 These findings suggest that different omics
technologies may capture distinct ageing signals.

While chronological age is the greatest risk factor for
many diseases, it’s non-modifiable and may not accu-
rately reflect an individual’s health status due to in-
fluences such as lifestyle, environmental factors, and
diseases.22 Relatively, metabolic ageing biomarkers may
capture the age-related shift in metabolism, offering a
more precise representation of an individual’s overall

health, and potentially serving as a superior predictor of
health outcomes. Therefore, the difference between the
estimated metabolic age and chronological age (delta)
can provide insights into age-related metabolic
changes.20 Individuals with a positive metabolic age
delta are hypothesised to be metabolically older than
their chronological age suggests, and therefore are at
higher risk of age-related diseases.

The low cost and accessibility of metabolomics has
driven the application of metabolic age to population
levels.17,23,24 However, current metabolic age models have
suffered from a limited prediction accuracy, possibly
due to their focus on a limited subset of metabolites that
may not fully capture the complexity of age-related
changes. Lipidomics, a subset of metabolomics, has
been demonstrated to show strong associations with
age.25,26 In a recent publication, we observed strong
linear and non-linear associations of lipid species with
age in a large population.25 Given the intimate link be-
tween lipid species and age, the lipidome may serve as a
better metabolic ageing biomarker, particularly when
the non-linearity is properly leveraged.

In this study, we have utilised comprehensive lip-
idomic profiles of two large population cohorts: the
Australian Diabetes, Obesity and Lifestyle Study (Aus-
Diab, n = 10,339) and the Busselton Health Study (BHS,
n = 4494), to create metabolic age scores (metabolic age;
mAge). We demonstrate the construction of metabolic
age using penalised linear models (ridge and LASSO)
and deep neural networks. The association of metabolic
age delta (mAgeΔ) was then examined for prevalent and
incident cardiovascular disease, type-2 diabetes, and all-

Research in context

Evidence before this study
While chronological age is the greatest risk factor for many
diseases, it’s non-modifiable and may not accurately reflect an
individual’s health status over time. Metabolic ageing
biomarkers may capture the age-related shift in metabolism,
offering a more precise representation of an individual’s
overall metabolic health. Further, current metabolic age
models have suffered from a limited prediction accuracy,
possibly due to their focus on a limited subset of metabolites
that may not fully capture the complexity of age-related
changes. Lipidomics, a subset of metabolomics, has been
demonstrated to show strong associations with age. A
Google scholar search was performed, using the key words
“Biological age” OR “Metabolic age” OR “machine learning”
OR “Cardiovascular disease” OR “Metabolomics” AND
“Lipidomics”. There was no study to describe a lipidome based
metabolic age.

Added value of this study
We employed different machine learning models, to predict
age, and calculated metabolic age scores. Upon stratification

of the population into quintiles by mAgeΔ (the difference
between metabolic age and age), we observed that
participants in the top quintile had more than a two-fold
increased risk of 12-year incident cardiovascular events and a
1.56-fold increased risk of 17-year all-cause mortality, relative
to the individuals in the bottom quintile. Survival analysis
further revealed that men in the top quintile faced the
challenge of reaching a median survival rate due to
cardiovascular events more than six years earlier and reaching
a median survival rate due to all-cause mortality more than
four years earlier than men in the bottom quintile.

Implications of all the available evidence
The lipidome based metabolic age can efficiently identify
individuals at a higher risk of CVE and mortality, highlighting
those who may benefit from early lifestyle or clinical
intervention. The metabolic age score has the potential to
serve as a health score that is modifiable and may identify
individuals that are at high risk of age-related disease.
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cause mortality. We propose that mAge and mAgeΔ will
provide a means to measure and monitor an individual’s
metabolic health, allowing early intervention to reduce
risk of age-related disease.

Methods
Study design and participants
Australian Diabetes, Obesity and Lifestyle Study (Aus-
Diab): The AusDiab served as our primary training
dataset for all our models. The AusDiab cohort repre-
sents a sample of the Australian population and focuses
on studying the prevalence and risk factors associated
with diabetes. The baseline survey took place in 1999/
2000, involving 11,247 participants aged ≥ 25 years.
These individuals were randomly selected from six
states and the Northern Territory, encompassing 42
urban and rural areas across Australia, using a stratified
cluster sampling method.27 Measurement techniques
for clinical lipids including fasting serum total choles-
terol, HDL-C, and triglycerides as well as for height,
weight, BMI, and other behavioural risk factors have
been described previously.27,28 We utilised all baseline
fasting plasma samples from the AusDiab cohort
(n = 10,339) after excluding samples from pregnant
women (n = 21), those with missing data (n = 277), for
technical reasons (n = 19) or whose fasting plasma
samples were unavailable (n = 591). The average age of
the cohort at baseline was 51.3 years, with a standard
deviation (SD) of 14.3 years, and women accounted for
55% of the participants. Notably, the excluded samples
(excluding pregnant women; n = 887) exhibited similar
distributions for clinical variables as the included sam-
ples, indicating their missingness is likely at random.

The busselton health study (BHS)
The BHS cohort was utilised as a validation cohort for our
study. The BHS is a community-based population study
recruited in Western Australia since 1966. This cohort
contains extensive phenotype data, particularly related to
cardiovascular disease (CVD) traits. In our analysis, we
included a total of 4492 subjects from the 1994/95 survey
of this ongoing epidemiological study (see Table 1). The
mean age of the 1994/95 BHS cohort was 50.8 years, with
a standard deviation (SD) of 17.4 years, and women
constituted 56% of the participants. The details of the
study and measurements for HDL-C, triglycerides, total
cholesterol, and BMI were previously described.29,30

Fasting plasma cholesterol and lipoprotein concen-
tration including total cholesterol, high density choles-
terol, (HDL-C), low density lipoprotein cholesterol
(LDL-C) and triglycerides, fasting plasma glucose (FPG)
and 2 h post load glucose (2 h-PLG) were measured
using standard protocols.31

In Table 1, we presented the baseline characteristics
of participants from both the AusDiab and BHS cohorts
for comparison.

Clinical outcomes
In the AusDiab cohort, prevalent CVD (defined as his-
tory of heart attack and stroke combined; n = 577),
incident cardiovascular events (CVE; n = 444) recorded
over 12 years of follow-up and all-cause mortality over 17
years of follow-up were included. All nonfatal clinical
data were collected through self-report, which was sub-
sequently confirmed and adjudicated using medical re-
cords. Death in the cohorts were identified via the
National Death Index. Incident CVEs included ischae-
mic heart disease (angina pectoris, myocardial infarc-
tion, coronary artery bypass grafting and percutaneous
transluminal coronary angioplasty; n = 329) and cere-
brovascular disease (intracerebral haemorrhage, cere-
bral infarction and stroke; n = 95). The CVE outcomes
were defined based on the international classification of
diseases (ICD) codes and ascertained through linkage to
the National Death Index (deaths) and medical records
(nonfatal events). There were 686 prevalent type 2 dia-
betes (T2D) cases (including newly diagnosed, untreated
and treated diabetes). Participants with newly diagnosed
prevalent diabetes are those who meet three criteria: 1)
They were not diagnosed with diabetes when they
entered the study; 2) They haven’t taken any diabetes
medicine; 3) They have FPG or 2 h-PLG measurements
over the diabetes cut-off range (FPG ≥ 7.0 mmol/L or

AusDiab BHS

#Subjects 10,339 4492

Demographic

Sex (%male) 4654 (45.0) 1976 (44.0)

Age (years, mean ± sd) 51.3 (±14.3) 50.8 (±17.4)

BMI (kg/m2, mean ± sd) 26.9 (±4.9) 26.2 (±4.2)

Clinical lipids

Cholesterol (nmol/L, mean ± sd) 5.66 (±1.07) 5.58 (±1.11)

HDL-C (nmol/L, mean ± sd) 1.44 (±0.39) 1.39 (±0.39)

Triglycerides (nmol/L, mean ± sd)a 1.28 (±0.92) 1.18 (±0.90)

Other cardiometabolic risk factors

SBP (mmHg) 129.2 (±18.6) 124.0 (±17.9)

DBP (mmHg) 70.0 (±11.7) 74.5 (±10.2)

FBG (mmol/L) 5.2 (±1.1) 5.0 (±1.4)

2 h-PLG (mmol/L) 6.3 (±2.7) –

Prevalent clinical outcomes at baseline

Prevalent diabetes (%)b 395 (3.8) 271 (6.0)

Prevalent CVD (%) 577 (5.6) 238 (5.3)

Incident clinical outcomes

Major CVE (%) (12 years follow up) 444 (4.3) –

Incident IHD (%) 329 (3.2)c 284 (2.8)d/551 (5.3)e

Stroke (%) (12 years follow up) 95 (0.9) –

All-cause mortality (%) (17 years follow up) 1706 (16.5) –

aData in Median, (IQR) as Triglyceride distribution was right skewed. bPrevalent diabetes only include the
untreated prevalent cases. cIncident IHD cases with 12 years follow up in AusDiab. dIncident IHD cases with 10
years follow up in BHS. eIncident IHD cases with 20 years follow up in BHS.

Table 1: Characteristics of participants from the Australian Diabetes, Obesity and Lifestyle Study
(AusDiab) and the Busselton Health Study (BHS).
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2 h-PLG ≥ 11.1 mmol/L after a 75-g oral glucose load).32

Out of 686 prevalent diabetes cases, there were 395
newly diagnosed/untreated diabetes and 291 treated
diabetes. In this study, we excluded the treated diabetes
at baseline to avoid the bias driven by the diabetes-
related medication. All-cause mortality (n = 1706)
within a 17-year follow-up period was also included.

In the BHS cohort, there were 238 prevalent CVD
cases and 4254 controls at baseline and 284/551 IHD
events (including myocardial infarction, angina, coro-
nary artery bypass grafting and percutaneous trans-
luminal coronary angioplasty) over 10/20 years of
follow-up. Furthermore, there were 271 prevalent dia-
betes cases (the combination of newly diagnosed/un-
treated diabetes).

The definition of clinical outcomes for AusDiab and
BHS is detailed in the Supplementary Fig. S1.

Lipidomic profiling
Targeted lipidomic analysis was performed using liquid
chromatography electrospray ionization tandem mass
spectrometry (LC-ESI-MS/MS). An Agilent 6490 triple
quadrupole (QQQ) mass spectrometer [(Agilent 1290
series HPLC system and a ZORBAX eclipse plus C18
column (2.1 × 100 mm 1.8 μm, Agilent)] in positive ion
mode were used. Details of the method and chroma-
tography gradient have been described previously.33,34

The LC-MS/MS conditions and settings with the
respective MRM transitions for each lipid (n = 747) can
be found in Supplementary Table S1. For the BHS
cohort, lipidomic profiling was performed using the
standardised methodology as described previously33,35

and detailed by Huynh et al.25,33 Overall, 596 lipid spe-
cies were quantified; 575 of which were common to
AusDiab cohort (highlighted in Supplementary
Table S1).

Construction of metabolic age score (mAge)
We randomly split AusDiab into 10 folds to create a 10-
fold cross-validation framework, where we repeatedly
selected one-fold as the validation set and combined all
others as the training set. For each iteration of the
training set, we employed ridge regression (ridge),36

LASSO (Least Absolute Shrinkage and Selection Oper-
ator),37 and neural network38 to model the associations
between age and the 575 lipid species (common be-
tween AusDiab and BHS datasets), while adjusting for
sex and BMI:

age∼sex+ bmi+∑
n

i=1
β̂i × lipidi+ e (1)

Here n is the number of lipids. All the predictors were
scaled to zero-mean and unit-variance. Under the model
(1), we utilised the R package ‘glmnet’39 to perform ridge
and LASSO respectively. The lambda parameters under
the restricted range from 0.001 to 10 were selected

according to the minimum cross-validated RMSE (Root
mean square error).

To account for the non-linearity of the lipidome over
time, we also implemented a two-layer neural network
using the R package ‘keras’ and ‘tensorflow’. We utilised
an optimised parameter set, including a dropout rate of
0.4, 128 units in each layer, the ReLU activation func-
tion, and a kernel regularizer with an L2 penalty of
0.001.

Subsequently, using these models, we generated
three sets of predicted age values for each individual
respectively, referred to as ‘pAge’. We assessed the
performance of each model by calculating the coefficient
of determination (R2), which represents the squared
Pearson correlation between pAge and Age. This metric
provides an indication of how much of the age variance
is captured by the models. The predicted age in BHS
(the external validation cohort) was calculated by taking
the average of predicted values across the model-folds
developed in AusDiab.

We introduced the term ‘mAgeΔ’, which was calcu-
lated as the difference between pAge and the line of best fit
between pAge and Age: pAge ∼ μ + β̂ × age + e. In this
equation, the term e represents the residuals (mAgeΔ). For
more detailed information, please refer to Supplementary
Material S1.

Finally, we defined the term ‘mAge’ as the sum of
age and mAgeΔ.

Derivation of lipidome based CVD risk score
To evaluate the comparative performance of mAgeΔ and
a CVD-specific risk score in predicting CVD, we devel-
oped a novel CVD risk score using the full lipidome,
following a similar approach proposed by Wu et al.40 We
employed a ridge regression model to analyse the lip-
idomic data for predicting incident CVD in the AusDiab
study. The lambda parameters, ranging from 0.001 to
10, were optimised to maximise the area under the
curve (AUC). We externally validated this model in the
BHS study, which refined our approach and solidified
the CVD risk score derivation.

Statistical analysis
Linear regression models were used to examine the
association of mAgeΔ or Age with the plasma lipidomic
profile adjusting for sex, and BMI. The p-values were
corrected for multiple comparison using the Benjamini-
Hochberg procedure.41

We employed logistic regression models42 (R package
‘glm’) or time-to-event Cox proportional hazard regres-
sion models43 (R package ‘survival’) to assess the asso-
ciations between clinical outcomes and mAgeΔ, while
adjusting for age, sex, and BMI. The derived odds ratios
or hazard ratios were utilised to evaluate the strength of
the associations, with p-values indicating the level of
significance. Additionally, we categorised mAgeΔ into
quintiles (Q1-Q5) and used these quintiles instead of
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mAgeΔ as the main predictor in the logistic regression
or Cox regression models. The Akaike information cri-
terion (AIC) was used to assess the relative quality of
individual models with and without mAgeΔ. Addition-
ally, we carried out time-to-event Cox proportional haz-
ard regression models to examine the associations
between incident CVD and CVD risk score, adjusting
for age, sex, and BMI.

We also performed Kaplan–Meier survival analysis
(R package ‘survival’ 3.1–12)44 to evaluate the survival
rates of individuals across Q1-Q5 with regards to either
incident major CVE or all-cause mortality. In these an-
alyses, age was treated as the time scale, and the quin-
tiles of mAgeΔ served as the predictor.

We conducted a sensitivity analysis to examine the
performance of mAge models using a sex-stratified
population. Driven by this, we derived sex-specific
metabolic age scores for male and female groups sepa-
rately, employing a ridge regression model with the
entire lipidome as predictors to predict age.

Additionally, we conducted another set of sensitivity
analysis to assess the performance of a comprehensive
set of covariates, including age, sex, BMI, smoking
status, HDL-C, Cholesterol, Triglycerides, prevalent
diabetes, and Systolic Blood Pressure (SBP), in
deriving the metabolic age score. To achieve this, we
applied the ridge regression model to predict age using
this extensive covariate set and the whole lipidome,
subsequently generating mAge and mAgeΔ. Further-
more, we employed a time-to-event Cox regression
model to investigate the associations between the
derived mAgeΔ and incident diseases, with adjust-
ments made for age, sex and BMI. In the analysis, we
have excluded LDL-C from the clinical lipid panel as
it’s a calculated measure from total cholesterol and
triglyceride levels.45

Ethics
This study used datasets from the AusDiab biobank
(project grant APP1101320) approved by the Alfred
Human Research Ethics Committee, Melbourne,
Australia (project approval number, 41/18) and the
BHS cohort (informed consent obtained from all par-
ticipants, and the study was approved by the University
of Western Australia Human Research Ethics Com-
mittee [UWA-HREC; approval number, 608/15]). The
current study was also approved by UWA HREC (RA/
4/1/7894) and the Western Australian Department of
Health HREC (RGS03656). Both studies were con-
ducted in accordance with the ethical principles of the
Declaration of Helsinki. No participant compensation
was provided.

Role of funders
The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.

Results
Population cohorts
Targeted lipidomic profiling was performed in fasting
plasma samples of the AusDiab cohort (n = 10,339)25

and fasting serum samples of the BHS cohort
(n = 4492).46 Both cohorts have similar distributions of
age, sex, and BMI and clinical lipid measures (Table 1).
In total, 747 lipid species were measured in AusDiab
samples, and 596 lipid species in BHS samples. After
alignment, 575 lipid species (from 33 lipid classes) were
measured in both cohorts, including the major species
from the glycerophospholipid, sphingolipid, glycerolipid
and sterol classes.

To evaluate the associations of mAge with heath
determinants, we included a range of clinical outcomes
in AusDiab and BHS consisting of prevalent cardio-
vascular disease (CVD), prevalent diabetes, incident
major cardiovascular events (CVE), and incident all-
cause mortality (Table 1; Fig. 1).

We further characterised the distribution of incident
ischaemic heart disease (IHD) cases with age and sex
over a 10 year follow up period. There were 329 incident
IHD cases in AusDiab and 284 in BHS respectively over
10 years of follow up. There was a higher proportion of
females in the >70 years group in BHS, while, in Aus-
Diab, there were more males in the 50–70 years group
developing IHD (Supplementary Fig. S2).

Deriving a metabolic age score
The metabolic age (mAge) scores were constructed in
the AusDiab dataset, using penalised linear models
(ridge and LASSO), and nonlinear models (neural
network), incorporating the whole lipidome, sex, and
BMI as predictors of age (Fig. 1).

Model performance was assessed using ten-fold
cross-validation within the AusDiab cohort and
external validation in the BHS cohort. For external
validation, the average predicted age across the model-
folds was used for association analysis.

While the ridge model contained all 575 lipid spe-
cies, the LASSO model selected between 373 and 421
lipid species between the cross-validation folds. The
predictive performance of these models was determined
using R2 (the variance in age explained by the lipidome),
which was calculated as the square of the Pearson cor-
relation between the average predicted age (pAge) and
chronological age (Fig. 2; Supplementary Table S2). In
AusDiab, the neural network model showed the highest
correlation with age (R2 = 0.73), while the ridge
(R2 = 0.68) and LASSO (R2 = 0.69) models showed
similar performance. However, external validation in
BHS, reversed this trend, with the ridge (R2 = 0.71) and
LASSO (R2 = 0.70) models performing better than the
neural network (R2 = 0.65) model (Fig. 2;
Supplementary Fig. S3). Across both cohorts, the ridge
and LASSO models showed consistent predictive per-
formance, while the neural network model showed
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diminished performance in the external validation
cohort, indicating possible overfitting of this model. We
further derived sex-specific metabolic age scores for
male and female groups separately, employing a ridge
regression model with the entire lipidome as predictors
to predict age. Interestingly, we found that the female-
specific mAge score (R2 = 0.68) showed similar perfor-
mance as the whole population-based mAge score, while
the male-specific mAge score (R2 = 0.64) exhibited
weaker performance relative to the whole population-
based mAge score.

The weights of individual lipid species in the ridge
and LASSO models showed that lipid species from
acylcarnitine (AC), sphingomyelin (SM), alkenylphos-
phatidylcholine (PCP), lysophosphatidylcholine (LPC),
lysoalkylphosphatidylcholine (LPC(O)) were major pre-
dictors in both models (Supplementary Fig. S4 and
Table S3).

To assess the predictive performance of lipid species
relative to clinical lipids (HDL-C, cholesterol, and tri-
glycerides), we repeated the penalised linear model
creation, replacing lipid species with clinical lipids as
predictors. Both ridge and LASSO models built with
clinical lipids explained only a small proportion of age
variance (R2 = 0.06 for ridge and LASSO). External
validation of clinical lipid models showed similar pat-
terns (Supplementary Fig. S5 and Table S4). As a part of
our sensitivity analysis, we conducted ridge regression

analysis that incorporated an extended set of predictors,
which included sex, BMI, smoking status, HDL-C,
cholesterol, triglycerides, prevalent diabetes, systolic
blood pressure (SBP), and the lipidome. This expanded
ridge model, with all these predictors, exhibited the ca-
pacity to explain up to 71% of the variance in age (R2) –
3% higher relative to our original ridge model including
only sex, BMI, and the lipidome (Supplementary
Table S5). When we excluded the lipidome from this
predictor set, the model’s prediction ability was reduced
to only 30% (Supplementary Table S5). The external
validation of such a model in BHS demonstrated a
similar prediction performance.

Based on these predicted age values (pAge) derived
from the different models, we further introduced the
term ‘mAgeΔ’ to quantify the additional information
captured by the lipidome, independent of age. mAgeΔ
was calculated as the difference between pAge and the
line of best fit between pAge and Age. Further details
can be found in the Methods section. The distribution of
mAgeΔ in the AusDiab and BHS has been detailed in
the Supplementary Fig. S6a and b.

Chronological age and mAgeΔ show the same
associations with lipid species
To better understand the lipid biology captured by
mAgeΔ, we performed linear regression of age and
mAgeΔ against all lipid species, in the AusDiab cohort.

Fig. 1: The study design incorporating the AusDiab cohort as the training dataset and the BHS as the validation dataset. The study design
includes: 1) Build predictive models using different machine learning methods, treating age as the outcome, and all the lipidomic data as the
predictors adjusting for sex and BMI. Different machine learning methods included linear models (ridge and LASSO), and non-linear models
(neural network). To reduce the overfitting, all these models were developed within a ten-fold cross validation framework. The fit of the models
was assessed with R2 (the associations between pAge and age). 2) Standardise pAge to the population to determine metabolic age (mAge).
mAgeΔ was calculated using the residuals between pAge and the line of best fit of pAge against age. 3) Use mAgeΔ to stratify the population
(quintiles). 4) Risk assessment – examine the associations of mAgeΔ with clinical outcomes on the stratified populations (Q1-Q5).
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Of the 575 lipid species tested, 504 were significantly
associated with age – independent of sex and BMI –

after correction for multiple comparisons (Fig. 3).
Comparing the associations of lipid species with

chronological age and mAgeΔ, we observed that the
coefficients were highly correlated (R2 = 0.99 for ridge;
R2 = 1.0 for LASSO; And R2 = 0.93 for neural network)

(Supplementary Fig. S7 and Table S6), indicating that
mAgeΔ captures the same lipid biology as age.

Ridge regression models effectively estimate
mAgeΔ
We hypothesised that as the additional biological infor-
mation captured by the lipidome was independent of

Fig. 2: The performance of ridge, Lasso and neural network in AusDiab and BHS cohorts. All models were trained on AusDiab data within a
10-fold cross validation framework and externally validated on the BHS cohort. a. The comparison of prediction accuracy of ridge, LASSO, and
neural network models by R2 in AusDiab. The R2 values were calculated by the squares of the Pearson’s correlations between predicted age
(pAge) and actual age. The 95% CI for the R2 values were based on 10,000 bootstrapped confidence intervals. b. The comparison of prediction
accuracy of ridge, LASSO, and neural network models by R2 in the external validation cohort BHS. c. The scatter plots of pAge (derived from
ridge) against chronological age in AusDiab (Training set under 10 folds CV). d. The scatter plots of pAge (derived from ridge) against
chronological age in BHS (Testing set).
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age, mAgeΔ would also be significantly associated with
cardiometabolic risk. Driven by this, we performed lo-
gistic regression to evaluate the relationship of mAgeΔ
from different machine learning models with prevalent
disease, including CVD and diabetes. The logistic
regression models were adjusted for age, sex, and BMI.
In AusDiab, mAgeΔ derived from the ridge model
showed a slightly higher odds ratio (OR) for CVD per
unit change in mAgeΔ (OR = 1.33, 95% CI = 1.22–1.45,
p = 1.43 × 10−10) compared to both the LASSO
(OR = 1.30, 95% CI = 1.19–1.42, p = 2.93 × 10−09) and
neural network (OR = 1.31, 95% CI = 1.21–1.43,
p = 2.45 × 10−11) models (Supplementary Fig. S8a).
Relative to CVD, mAgeΔ showed weaker associations
with diabetes, although here also the mAgeΔ from the
ridge model had a slightly higher odds ratio for diabetes
than either the LASSO or neural network models
(Supplementary Fig. S8a). Additionally, we introduced
an extended covariate set (including age, sex, BMI,
smoking status, HDL-C, triglycerides, cholesterol, and
systolic blood pressure [SBP]) to adjust the model. We
observed that the associations of mAge with prevalent
CVD and diabetes, after adjustment with the extended
covariates, were similar to the associations observed
with adjustment for age, sex, and BMI alone
(Supplementary Table S7).

To further validate these findings, we examined
these associations in BHS (Supplementary Fig. S9a).
Here, we also observed stronger associations of the
mAgeΔ (ridge model) compared to LASSO and neural
network models with prevalent IHD (ridge, OR = 1.21,
95% CI = 1.05–1.40, p = 6.81 × 10−03; LASSO, OR = 1.19,
95% CI = 1.04–1.37, p = 1.32 × 10−02, neural network,
OR = 1.12, 95%CI = 0.98–1.28, p = 9.29 × 10−02). In the
BHS, mAgeΔ from all three models was not signifi-
cantly associated with prevalent diabetes.

To assess the ability of mAgeΔ to predict incident
disease risk, we performed Cox regression between
mAgeΔ and incident CVD outcomes in AusDiab
(Supplementary Fig. S8b), adjusted for age, sex, and BMI.
We calculated the hazard ratio (HR) of mAgeΔ with
incident CVE, IHD, and stroke (12 years follow-up) and
all-cause mortality (17 years follow-up). We observed that
mAgeΔ from all three models had similar performance
in terms of the magnitude of effect. For example, for
incident CVE (n = 444), we observed that mAgeΔ (ridge)
had a hazard ratio (HR; per unit change in mAgeΔ) of
1.30 (95% CI = 1.18–1.42, p = 5.39 × 10−08), with mAgeΔ
(LASSO) having a HR of 1.29 (95%CI = 1.17–1.41,
p = 9.77 × 10−08) and mAgeΔ (neural network) having
HR of 1.28 (95%CI = 1.18–1.28, p = 5.77 × 10−09). The

same finding was also observed for all-cause mortality –

very consistent results were observed across the three
models (ridge model, HR = 1.18, 95% CI = 1.13–1.24,
p = 6.64 × 10−12; LASSO model HR = 1.17, 95%
CI = 1.12–1.23, p = 3.10 × 10−11; and neural network
model, HR = 1.18, 95%CI = 1.13–1.23, p = 4.92 × 10−15).
Furthermore, we observed that the associations of mAge
with incident outcomes, after adjustment with the
extended covariates (age, sex, BMI, smoking status,
HDL_C, Triglycerides, Cholesterol, and systolic blood
pressure SBP), closely resembled the associations
observed with adjustment for age, sex, and BMI alone
(Supplementary Table S7). The assessment of the pro-
portional hazard assumptions of the Cox model for
incident CVE outcomes and mAgeΔ, adjusted for these
extended covariates revealed no violations of the propor-
tional hazard assumption for any of the variables
included in the model (Supplementary Table S8).

In our sensitivity analysis, we further investigated
the associations between these incident outcomes and
mAgeΔ, which was derived from a comprehensive set of
predictors (including sex, BMI, smoking status, HDL-C,
cholesterol, triglycerides, prevalent diabetes, SBP, and
the lipidome). In comparison to the previous associa-
tions observed with mAgeΔ (derived from BMI, sex, and
the lipidome), mAgeΔ derived from the full set exhibi-
ted enhanced associations with incident CVE
(HR = 1.38, 95%CI = 1.25–1.51, p = 5.62 × 10−11) and
IHD (HR = 1.35, 95%CI = 1.21–1.51, p = 1.46 × 10−07)
(Supplementary Table S9). However, it showed dimin-
ished associations with incident all-cause mortality
(HR = 1.15, 95%CI = 1.10–1.21, p = 5.74 × 10−09)
(Supplementary Table S9).

We further applied the Cox regression models in BHS
to validate the above findings. Only IHD with both 10- and
20-years follow-up in BHS shared the similar definition as
in AusDiab. Therefore, we evaluated the associations of
mAgeΔ with incident IHD independent of age, sex, and
BMI (Supplementary Fig. S9b). In comparison to the re-
sults observed in the AusDiab dataset, we noted weaker
associations in the BHS dataset, characterised by signifi-
cantly reduced hazard ratios (HR) and diminished statis-
tical significance (p values). When we compared the
performance across different machine learning models,
mAgeΔ from the ridge model (20-years incident IHD:
HR = 1.13, 95%CI = 1.04–1.23,p = 4.73 × 10−03; 10-years
incident IHD: HR = 1.14, 95%CI = 1.01–1.29,
p = 2.81 × 10−02) and LASSO model (20-years incident
IHD: HR = 1.13, 95%CI = 1.03–1.22, p = 8.22 × 10−03;10-
years incident IHD: HR = 1.13, 95%CI = 1.01–1.28,
p = 3.73 × 10−02) showed significant associations, while

Fig. 3: The associations of lipid species with chronological age and mAge Δ from ridge. Associations of 575 lipid species with age (a), or
mAgeΔ derived from a ridge model (b) were estimated using linear regression adjusted for sex, BMI and age (mAgeΔ only). Pearson corre-
lations of the beta coefficients from a-b are shown (c).
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mAgeΔ from the neural network models (20-years inci-
dent IHD: HR = 1.05, 95%CI = 0.97–1.14,
p = 2.68 × 10−01;10-years incident IHD: HR = 1.02, 95%
CI = 0.91–1.14,p = 7.58 × 10−01) were not significantly
associated with incident IHD. These findings demon-
strated mAge from ridge and LASSO models had more
consistent performance across the two cohorts than mAge
from the neural network model, in terms of incident IHD
risk prediction.

Addition of mAgeΔ enhances the predictive
performance of the models for clinical outcomes
To evaluate the significance of incorporating mAgeΔ
into the prediction of clinical outcomes in the AusDiab
cohort, we compared two nested models using Akaike’s
information criterion (AIC) and Likelihood ratio test
(LRT). Specifically, we compared one model including
age, sex, and BMI as predictors with another model
adding mAgeΔ alongside age, sex, and BMI. Our
analysis revealed that models with mAgeΔ demon-
strated a superior fit in predicting prevalent CVD, as
evidenced by smaller AIC values (AIC = 3619.21 with
mAgeΔ vs. AIC = 3658.56 without mAgeΔ) and a sig-
nificant LRT p-value of 1.26 × 10−10. Similarly, for
predicting CVE, the model incorporating mAgeΔ
exhibited a significantly better fit (AIC = 7033.96 with
mAgeΔ vs. AIC = 7061.46 without mAgeΔ) with an
LRT p-value of 5.60 × 10−08. Additionally, the model
with mAgeΔ showed improved fit for predicting inci-
dent all-cause mortality compared to the model without
mAgeΔ (Supplementary Table S10).

mAgeΔ shows similar associations with incident
IHD in men and women
We observed different distributions of incident IHD
cases between the sex- and age-stratified populations of
BHS and AusDiab (Supplementary Fig. S2). We then
examined the associations of mAgeΔ with incident IHD
in sex-stratified populations of both cohorts. Due to the
relatively consistent performance across cohorts, mAgeΔ
(ridge) was selected for the subsequent analyses.

In AusDiab, there were 329 incident IHD cases, with
222 and 107 in men and women, respectively. In the
sex-stratified population, the association of mAgeΔ with
incident IHD was marginally stronger in men
(HR = 1.29, 95%CI = 1.13–1.48, p = 1.68 × 10−04) than
women (HR = 1.25, 95%CI = 1.04–1.50, p = 1.92 × 10−02,
Supplementary Fig. S10). However, in the BHS cohort,
out of 284 incident IHD cases (10 years follow-up), there
were equivalent numbers of female (n = 134) and male
cases (n = 150). Both male (HR = 1.10, 95%
CI = 0.93–1.30, p = 2.73 × 10−01) and female (HR = 1.16,
95%CI = 0.987–1.38, p = 9.29 × 10−02) showed weaker
associations with incident IHD (Supplementary Fig. S10
and Table S11).

In our sensitivity analysis, we further examined the
associations of incident IHD with sex-specific mAge

scores using a Cox regression model adjusted for age
and BMI in men and women. Interestingly, we observed
similar associations of incident IHD with mAge score
that were derived either on the whole population or sex-
specific population in AusDiab. In the female group, the
mAge score modelled exclusively on females showed an
HR of 1.27 (95% CI: 1.04–1.51) with p = 6.38 × 10−02.
Similarly, in the male group, the mAge score modelled
exclusively on males had an HR of 1.26 (95% CI:
1.10–1.45) with p = 7.06 × 10−04 (Supplementary
Table S11). Upon validation in BHS, sex-specific
mAge scores did not exhibit significant associations
with incident IHD.

mAgeΔ shows strong associations with
cardiometabolic risk factors
To assess the relationship between mAgeΔ and car-
diometabolic risk factors, including BMI, HDL-C, tri-
glycerides, cholesterol, SBP, DBP, fasting blood glucose
(FBG), and 2-h post-load glucose (2 h-PLG), we con-
ducted linear regression analyses. In AusDiab, we
observed strong associations of mAgeΔ with all car-
diometabolic traits, especially for cholesterol
(beta = 0.12, 95% CI = 0.11–0.14, p = 6.85 × 10−39) and 2-
h post load glucose (beta = 0.07, 95% CI = 0.05–0.09,
p = 2.82 × 10−14) (Supplementary Table S12). These
associations were validated in the BHS cohort, revealing
similarly strong associations of mAgeΔ with most traits.
However, two exceptions were noted: 1) the absence of
records for 2-h post-load glucose in the BHS dataset,
and 2) the lack of significant associations of mAgeΔ
with SBP and DBP (Supplementary Table S12). Sur-
prisingly, positive associations of mAgeΔ with HDL-C
were observed in both cohorts. This may be related to
higher total lipoprotein load of older participants
compared to younger participants. Indeed, when HDL-C
was expressed relative to LDL-C we observed a negative
association with mAgeΔ in AusDiab (beta = −0.07, 95%
CI = −0.13 to −0.01, p = 1.72 × 10−02) and BHS
(beta = −0.06, 95% CI = −0.08–0.03, p = 2.55 × 10−05).

We stratified the AusDiab cohort into quintiles of the
mAgeΔ (Q1-Q5). As expected, the distributions of age
across the quintiles were comparable, while the mAge
and mAgeΔ values progressively increasing from Q1 to
Q5 (Fig. 4; Supplementary Table S13). We performed
linear regression analyses, treating cardiometabolic risk
factors as outcomes, quintiles of the mAgeΔ as the
predictor (Q5 relative to Q1) with the covariate set of
age, sex and BMI. Individuals in Q5 relative to Q1 had
significantly elevated levels of cholesterol (beta = 0.32,
95% CI = 0.26–0.38, p = 8.82 × 10−25), triglycerides
(beta = 0.24, 95% CI = 0.18–0.29, p = 1.41 × 10−15) and
2 h-PLG (beta = 0.16, 95% CI = 0.10–0.22,
p = 8.69 × 10−08) in the AusDiab cohort (Supplementary
Table S14). Notably, we also observed reduced level of
the ratio of HDL to LDL in Q5 (related to Q1)
(beta = −0.07, 95% CI = −0.13 to −0.01, p = 1.72 × 10−02).
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Fig. 4: The associations of mAgeΔ with cardiovascular disease, diabetes and all-cause mortality outcomes in the AusDiab cohort. a. The population was stratified
into quintiles using mAgeΔ. b. The distributions of age (left) and mAge (right) within mAgeΔ quintiles. c. The associations of mAgeΔ quintiles with prevalent CVD and
prevalent diabetes were examined using logistic regression models including age, sex, and BMI as covariates. d. The associations of mAgeΔ quintiles with incident CVE
and all-cause mortality were examined using Cox regression models treating time-to-event as the outcome, mAgeΔ as the predictor, and age, sex, and BMI as covariates.
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The validation results in BHS were consistent with
those in AusDiab.

Stratification by mAgeΔ identifies individuals at
increased risk of CVD and diabetes
In the stratified populations by mAgeΔ, we performed
logistic regression of the quintiles of mAgeΔ with
prevalent CVD and diabetes, treating Q1 (the lowest
mAgeΔ) as the reference. After adjusting for age, sex,
and BMI, we observed a progressive increase in the OR
of CVD from Q1 to Q5 (Fig. 4). Individuals in Q5 (the
largest mAgeΔ values) relative to Q1 had 2.13-fold
higher odds for prevalent CVD (OR = 2.13, 95%
CI = 1.62–2.83, p = 9.79 × 10−08) (Fig. 4c). In contrast,
only weak, non-significant, associations were observed
with prevalent diabetes.

Next, we validated the associations with prevalent
IHD in the stratified BHS cohort, where we observed a
comparable progressive increase in the strength of as-
sociation with prevalent IHD from Q1 to Q5 of mAgeΔ
(Supplementary Fig. S11).

Higher mAgeΔ is associated with increased risk of
incident CVE events and all-cause mortality
To assess whether the quintiles of mAgeΔ were asso-
ciated with incident major CVD events and all-cause
mortality, we performed Cox regression between
mAgeΔ quintiles and these outcomes in the AusDiab
dataset. As shown in Fig. 4d, the individuals in Q5 (the
highest mAgeΔ group) had a 2.01-fold (95%
CI = 1.45–2.57, p = 7.2 × 10−06) increased risk of 12-
year incident CVD and 1.56-fold (95%CI = 1.34–1.79,
p = 2.07 × 10−09) increased risk of 17-years all-cause
mortality relative to Q1 (reference group). We vali-
dated these findings against 10-year and 20-year inci-
dent IHD in the BHS cohort (Supplementary
Fig. S11d). Additionally, assessment of the propor-
tional hazard assumptions of the Cox model for inci-
dent CVE outcomes and mAgeΔ quintiles revealed that
no variables included in the model violated the pro-
portional hazard assumption (Supplementary
Table S15).

We then performed Kaplan–Meier survival analyses
to compare the different survival probabilities for death
due to major CVE across the quintiles of mAgeΔ in both
the total and sex-stratified AusDiab cohorts. The survival
curves revealed a higher rate of mortality for Q5 relative
to other groups in both the whole population and the
male group, while differences between Q5 and Q1 in the
female sub-cohort were smaller (Fig. 5). The difference
in survival curves between Q5 and Q1 became distinct
from 70 years onwards. In the whole population, par-
ticipants in Q5 would reach the median survival rate
when they were 90 years old (50% of the patients in the
group died by the age of 90), with the Q1 group reaching
the median survival at 92 years of age - a difference of
three years (Fig. 5a). This was more pronounced in

AusDiab males with the median survival rate of Q5
(age = 83) almost eight years earlier than Q1 (age = 90)
(Fig. 5c). In contrast, the AusDiab females had a median
survival rate ranging between Q1 (age = 92) and Q5
(age = 90) of 3 years (Fig. 5b). The p values from the log
rank test indicated a significant difference among five
groups’ survival curves in both the whole population
(p = 1.3 × 10−04), females (p = 1.9 × 10−02), and males
(p = 2.0 × 10−04).

To further examine the survival difference from all-
cause mortality, we performed the same survival anal-
ysis on all-cause mortality with 17 years follow-up
(Fig. 6). We observed the major difference between Q5
to Q1 in AusDiab men with a median survival difference
between Q1 (age = 88) and Q5 (age = 84) of 4 years, but
smaller differences in the total and women populations
(Fig. 6). The log rank test revealed significant differ-
ences between Q1-Q5 groups for incident all-cause
mortality in the whole population and males with
p < 1.0 × 10−04. However, no significant difference was
observed in the female group (p = 8.1 × 10−02).

Discussion
In this study, we derived lipidomic-based metabolic
age scores from two large population-based cohorts:
the AusDiab study (training cohort, n = 10,339) and
the BHS (validation cohort, n = 4492). We employed
both penalised linear and non-linear machine
learning models to derive the scores and then evalu-
ated their performance in terms of the proportion of
variance in age captured and their association with
disease outcomes and all-cause mortality. We
demonstrate the mAgeΔ, the difference between
mAge and chronological age, was strongly associated
with prevalent and incident CVE, independent of
chronological age. The subsequent survival analysis
supported these associations and further demon-
strated strong associations between mAgeΔ and all-
cause mortality, which was stronger in men than
women. These results suggest that mAgeΔ can iden-
tify a high-risk subset of the population that may be
amenable to early drug and lifestyle intervention to
improve their metabolic health and lower their car-
diometabolic risk.

Penalised linear models provide optimal
performance in the development of metabolic age
scores
We assessed both penalised linear and non-linear
models to predict age, motivated by the following con-
siderations: 1) linear models have the potential advan-
tage of lower over-fitting and ease of interpretation. 2)
LASSO can be utilised to select lipid species for smaller
models; 3) neural network may better capture the
nonlinearity of the relationship between lipid species
and age. The predicted age from the neural network
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Fig. 5: Survival analysis of incident CVE by mAgeΔ quintiles in the AusDiab cohort. Survival analyses were performed in the whole
population (444 cases, a), female only (161 cases, b), and male only (283 cases, c). The Kaplan–Meier curves show the survival rate of the
stratified population by mAge Δ quintile under the risk of incident CVE. The dotted lines indicate the median survival rate of each group.
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within a 10-fold cross-validation in the AusDiab dataset
explained 73% of the variance in age, which out-
performed the ridge (68%) and LASSO (69%) models.
However, we observed that both the ridge and LASSO
models performed better than the neural network in the
external validation in BHS, suggesting that the linear
models were better suited to the lipidomics data and
resulted in less overfitting of the models. Consistent
with our findings, previous studies have demonstrated
robust performance of penalised linear regression
models in the development of biological age scores.20,47

Further, the similar performance of ridge and LASSO
demonstrated that we could reduce the number of lipids
in the model without loss of performance.

Further evaluation of the associations of mAgeΔ
from different machine learning models with car-
diometabolic disease outcomes, showed comparable
associations with both prevalent and incident CVE risk
in the AusDiab cohort, but upon validation in the BHS
cohort, mAgeΔ from ridge and LASSO remained sig-
nificant, whereas mAgeΔ from neural networks did not.
These findings suggest penalised linear models of lip-
idomics against age may be superior to neural network
models of the same data.

Metabolic age delta represents lipid dysregulation
that is independent of chronological age
Lipidomic and metabolomic studies have demonstrated a
strong association between age and dysregulation of lipid
metabolism.25,26 To gain a deeper understanding of the
lipid biology captured by mAge, we examined the associ-
ations of mAgeΔ with the lipidome. We observed strong
positive associations of mAgeΔ with acylcarnitine, cer-
amide, phospholipid and triacylglycerol species, as well as
negative associations with certain lipid species from lyso
and ether phospholipid classes. Most of these lipid species
have also appeared as the top predictors in the mAge
modelling (Supplementary Fig. S3). When we plotted the
effect size (beta-coefficients) of the associations with
mAgeΔ against the corresponding beta-coefficients for
chronological age, we observed the associations of the
same lipid species with mAgeΔ correlated almost
perfectly to the associations with chronological age. The
correlation of the coefficients showing an R2 of 0.99–1.00
for both ridge and LASSO. This indicates that mAgeΔ
effectively captures the dysregulation of metabolic path-
ways that typically occur with ageing. Since mAgeΔ is
constructed to be independent of chronological age, any
biological variation it captures beyond chronological age
represents unique, age independent metabolic informa-
tion. The derivation of mAgeΔ - shown in Supplementary

Note S1 - explains why the correlation between beta-
coefficients of lipid species against chronological age
and mAgeΔ is close to 1.0, and why mAgeΔ contains
additional biological information that is independent of
chronological age. Notably, our previous research25 has
demonstrated that the age (and mAgeΔ) associated lipid
species can be mapped to several lipid metabolic path-
ways, including fatty acid oxidation (acylcarnitine species)
and ether lipid metabolism (alkyl and alkenylphospholipid
species). These same lipid species and pathways have
been shown to be highly linked to obesity,25 type 2 diabetes
mellitus (T2DM)48–50 and CVD risk,51–54 independent of age
and have been demonstrated to be modifiable by exercise
(acylcarnitine)55 or dietary supplementation (ether lipids).56

These findings suggest that mAge represents the
metabolic status of each individual, encompassing both
the metabolic dysregulation captured by chronological
age and the metabolic dysregulation (in the same lipid
metabolic pathways) that is not captured by chronolog-
ical age. Therefore, it is expected that mAge can serve as
a better predictor of metabolic health and car-
diometabolic disease risk than chronological age itself.

Higher mAgeΔ identified individuals with
increased risk of incident CVE and all-cause
mortality
Although age is a major risk factor for CVE and many
other age-related diseases, it does not accurately capture
all age-related metabolic dysregulation. For example,
elderly individuals who lead a healthy lifestyle and do not
carry major genetic risk factors may have good metabolic
health, while younger people may be at a high risk due to
a combination of poor lifestyle and genetic factors. Thus,
while chronological age is an important risk factor in
epidemiological studies it lacks discrimination at the in-
dividual level, where a biological measurement of age is
essential.5 Inspired by this, we introduced metabolic age
score, representing the metabolic status of each individ-
ual based on the lipid metabolic pathways.

To assess the ability of mAge to identify individuals
at increased risk, we stratified AusDiab into five
groups (Q1-Q5) based on the values of mAgeΔ (the
difference between mAge and chronological age).
Subsequent logistic or Cox regression analyses
demonstrated that the risk of major CVE in in-
dividuals in the Q5 group (highest mAgeΔ) was more
than twice that of individuals in the Q1 group
(smallest mAgeΔ). Furthermore, individuals in the Q5
group also had a 1.5-fold higher risk of incident all-
cause mortality relative to those in the Q1 group.
Survival curves revealed that males in the Q5 group

Fig. 6: Survival analysis of all-cause mortality by mAgeΔ quintiles in the AusDiab cohort. Survival analyses were performed in the whole
population (1706 cases, a), female only (814 cases, b, and male only (892 cases, c). The Kaplan–Meier curves show the survival rate of the
stratified population by mAgeΔ quintile under the risk all-cause mortality. The dotted lines indicate the median survival rate of each group.
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reached a 50% survival rate due to CVE about six years
earlier than males in the Q1 group. While the Q5
group included individuals with age ranging from 25
to 88 (Fig. 4b), those with a chronological age younger
than 50 years had mAgeΔ between 5.2 and 45.5,
indicating that they faced a higher risk of CVE and
mortality.

Metabolic age is better suited as a health score
rather than a disease biomarker
We developed the metabolic age score to demonstrate
how such a score may effectively capture age related
metabolic dysregulation, providing an accurate measure
of an individual’s metabolic health status, that can be
affected by lifestyle, environmental factors and disease
over time. However, while mAge and mAgeΔ associate
with multiple disease outcomes – and indeed with all-
cause mortality – it is important to note that metabolic
age is not intended to serve as a risk score for any
specific disease outcome, but rather as a modifiable
indicator of metabolic health across all ages. In our
study, we evaluated the performance of mAgeΔ and a
lipidome-based CVD risk score in predicting incident
CVD. Our finding revealed that the lipidome-based CVD
risk score (HR = 1.77, 95% CI: 1.42–2.21,
p = 3.94 × 10−07) significantly outperformed mAgeΔ
(HR = 1.13, 95% CI: 1.04–1.23, p = 4.73 × 10−03) in the
BHS validation cohort (Supplementary Table S16).
Additionally, other studies have proposed a range of
different lipidomic risk scores targeting at diseases57–59

or mortality,60,61 all of which have yielded promising
outcomes. However, these outcome-specific scores do
not capture a broad spectrum of metabolic health.
Indeed, the primary focus of such scores is on predict-
ing the likelihood of disease, rather than providing in-
sights into the complex interplay of factors that
contribute to metabolic health. Thus, we propose
metabolic age as a healthy aging score rather than a
disease-specific risk score.

In this study, we successfully defined a lipidomic-
based age score and demonstrated its effectiveness as
a measure of a metabolic health and a predictor of
cardiometabolic disease risk, independent of age, in
two large population cohorts. However, there were
several limitations. Firstly, the strong relationship
between mAgeΔ and IHD risk, observed in the Aus-
Diab training set was weaker in the BHS validation
set, likely due to differences in the age- and sex dis-
tribution of IHD cases in this cohort. We observed the
higher ratio of male to female events and the higher
proportion of male events in the 50–70 age group in
the AusDiab compared to the BHS cohort. Therefore,
an additional independent study is required to
confirm the predictive performance of mAge in CVD.
Another limitation of this study was the focus on
cardiometabolic diseases. To comprehensively eval-
uate mAge, the relationship with other age-related

diseases should be explored. Future analyses could
also explore the associations between metabolic age
and lifestyle/dietary factors as it is well recognised
that the plasma lipidome is modifiable by
interventions.56,62–66

Conclusion
This study presented a comprehensive lipidomic-based
score of metabolic age and assessed its relationship to
diabetes, CVD and all-cause mortality. It is important to
note that we do not propose mAge or mAgeΔ as new
CVD biomarkers, rather we envisage these metabolic
scores as useful guides to metabolic health, that can
identify metabolic dysregulation and provide an avenue
for early intervention. Thus, metabolic age has the po-
tential to serve as a health score that is modifiable and
may identify individuals at high risk of age-related
disease.
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