57 research outputs found

    Transcriptome analysis of stem development in the tumourous stem mustard Brassica juncea var. tumida Tsen et Lee by RNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumourous stem mustard (<it>Brassica juncea </it>var. <it>tumida </it>Tsen et Lee) is an economically and nutritionally important vegetable crop of the <it>Cruciferae </it>family that also provides the raw material for <it>Fuling </it>mustard. The genetics breeding, physiology, biochemistry and classification of mustards have been extensively studied, but little information is available on tumourous stem mustard at the molecular level. To gain greater insight into the molecular mechanisms underlying stem swelling in this vegetable and to provide additional information for molecular research and breeding, we sequenced the transcriptome of tumourous stem mustard at various stem developmental stages and compared it with that of a mutant variety lacking swollen stems.</p> <p>Results</p> <p>Using Illumina short-read technology with a tag-based digital gene expression (DGE) system, we performed <it>de novo </it>transcriptome assembly and gene expression analysis. In our analysis, we assembled genetic information for tumourous stem mustard at various stem developmental stages. In addition, we constructed five DGE libraries, which covered the strains <it>Yong'an </it>and <it>Dayejie </it>at various development stages. Illumina sequencing identified 146,265 unigenes, including 11,245 clusters and 135,020 singletons. The unigenes were subjected to a BLAST search and annotated using the GO and KO databases. We also compared the gene expression profiles of three swollen stem samples with those of two non-swollen stem samples. A total of 1,042 genes with significantly different expression levels occurring simultaneously in the six comparison groups were screened out. Finally, the altered expression levels of a number of randomly selected genes were confirmed by quantitative real-time PCR.</p> <p>Conclusions</p> <p>Our data provide comprehensive gene expression information at the transcriptional level and the first insight into the understanding of the molecular mechanisms and regulatory pathways of stem swelling and development in this plant, and will help define new mechanisms of stem development in non-model plant organisms.</p

    Leucine increases mucin 2 and occludin production in LS174T cells partially via PI3K-Akt-mTOR pathway

    No full text
    Mucin 2 and occludin play a crucial role in preserving the intestinal mucosal integrity. However, the role for leucine mediating intestinal mucin 2 and occludin expression has little been investigated. The current study was conducted to test the hypothesis that leucine treatment could increase mucin 2 and occludin levels in LS174T cells. The LS174T cells were incubated in the Dulbecco's Modified Eagle Medium (DMEM) supplementing 0, 0.5 and 5 mmol/L L-leucine for the various durations. Two hours after the leucine treatment, the inhibitor of mammalian target of rapamycin (mTOR) and protein kinase B (Akt) phosphorylation in LS174T cells were significantly increased (P < 0.05), and the mucin 2 and occludin levels were also significantly enhanced (P < 0.05). However, the pretreatment of 10 nmol/L rapamycin, which was an mTOR inhibitor, or 1 μmol/L wortmanin, which was an inhibitor of phosphatidylinositol 3-kinase (PI3K), completely inhibited leucine-induced mTOR or Akt phosphorylation (P < 0.05), and significantly reduced leucine-stimulated mucin 2 and occludin levels (P < 0.05). These results suggest that leucine treatment promotes the mucin 2 and occludin levels in LS174T cells partially through the PI3K-Akt-mTOR signaling pathway

    The Bidirectional Interactions between Resveratrol and Gut Microbiota: An Insight into Oxidative Stress and Inflammatory Bowel Disease Therapy

    No full text
    Dysbiosis and oxidative stress in the gut have contributed to the progression of intestinal inflammatory bowel disease (IBD). The current study has reported that enteric bacteria mediate redox homeostasis through the regulation of reactive oxygen species (ROS) production. Resveratrol, one of the most abundant polyphenols, with poor oral bioavailability, is considered as a scavenger of ROS and other free radicals. Recent studies have shown that resveratrol effectively enhances the growth of Lactococcus lactis and inhibits the growth of Enterococcus faecalis. (1) In terms of the two-way relationship between gut microbiota and resveratrol, resveratrol modulates gut microbiota; (2) in terms of resveratrol biotransformation by gut microbiota, we speculate that gut microbiota could be a target of resveratrol to maintain gut homeostasis. Here, we reviewed the current researches about the cellular signaling pathways in intestinal epithelial cells triggered by gut microbiota in response to oxidative stress. These results suggest that the modulation of the gut microbiota through resveratrol supplementation appears as a promising potential approach for the therapy of inflammatory bowel disease

    High nutrient intake during the early postnatal period accelerates skeletal muscle fiber growth and maturity in intrauterine growth-restricted pigs

    No full text
    Abstract Background Intrauterine growth-restricted (IUGR) neonates impair postnatal skeletal muscle growth. The aim of this study was to investigate whether high nutrient intake (HNI) during the suckling period could improve muscle growth and metabolic status of IUGR pigs. Methods Twelve pairs of IUGR and normal birth weight (NBW) pigs (7 days old) were randomly assigned to adequate nutrient intake and HNI formula milk groups. Psoas major (PM) muscle sample was obtained after 21 days of rearing. Results IUGR decreased cross-sectional areas (CSA) and myofiber numbers, activity of lactate dehydrogenase (LDH), and mRNA expression of insulin-like growth factor 1 (IGF-1), IGF-1 receptor (IGF-1R), mammalian target of rapamycin (mTOR), ribosomal protein s6 (RPS6), eukaryotic translation initiation factor 4E (eIF4E), protein expression of phosphorylated mTOR (P-mTOR), and phosphorylated protein kinase B (P-Akt) in the PM muscle of pigs. Irrespective of birth weight, HNI increased muscle weight and CSA, the concentration of RNA, and ratio of RNA to DNA, as well as ratio of LDH to β-hydroxy-acyl-CoA-dehydrogenase in the PM muscle of pigs. Furthermore, HNI increased percentages of MyHC IIb, mRNA expression of IGF-1, IGF-1R, Akt, mTOR, RPS6, and eIF4E, as well as protein expression of P-mTOR, P-Akt, P-RPS6, and P-eIF4E in the PM muscle of pigs. Conclusion The present findings suggest that high nutrient intake during the suckling period could improve skeletal muscle growth and maturity, which is associated with increasing the expression of protein deposition-related genes and accelerating the development of glycolytic-type myofiber in pigs

    Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris.

    Get PDF
    The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases

    Different Structures of Arabinoxylan Hydrolysates Alleviated Caco-2 Cell Barrier Damage by Regulating the TLRs/MyD88/NF-&kappa;B Pathway

    No full text
    Arabinoxylan (AX) has been associated with alleviating intestinal barrier damage, and different structures of AX give rise to different effects on the intestinal barrier. This study investigated the main structural characteristics of AX, whose functional properties are attributed to alleviating intestinal barrier damage, and clarified their underlying mechanisms. An in vitro Caco-2 cell model was established to investigate the intestinal barrier effects of AX with various degrees of substitution (Ds) and molecular weight (Mw), with an added MyD88 inhibitor to verify the signaling pathways. Arabinoxylan treated with endo-1,4-&beta;-xylanase (AXX) with higher Ds and Mw showed stronger physiological activity, which might be correlated with the uronic acid and bound ferulic acid contents in AXX. Moreover, AXX alleviated the intestinal barrier damage by upregulating the transepithelial electrical resistance (TER) and alleviating the decrease of claudin-1 (p &lt; 0.05). AXX regulated the expression of inflammatory factors IL-2, TNF-&alpha;, IL-6 and IL-10 (p &lt; 0.05). In addition, AXX reduced the intestinal barrier damage induced via inhibiting the TLRs/MyD88/NF-&kappa;B pathway and activating the TLRs/PKC pathway. Thus, AX with higher Ds and Mw might be better in alleviating intestinal barrier damage, and MyD88 might be the key point of AXX to identify these signaling pathways
    • …
    corecore