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Abstract

The risk of overweight or obesity in association with early exposure of antibiotics remains an important public issue for health-care of children. Low-dose
antibiotics (LDA) have been widely used to enhance growth rate of pigs, providing a good animal model to study the underlying mechanism. In present study, 28
female piglets, weaned at 21 d, were randomly classified into two groups, receiving either a control diet or a diet supplemented with LDA for 4 weeks. The total
bacterial load and intestinal microbiota were determined by qPCR and 16S rRNA amplicon sequencing. UPLC-QTRAP-MS/MS and RNA-seq were further used to
determine the colonic SCFAs and transcriptomes. Results showed that LDA significantly increased growth rate and food intake. The F/B index, Methanosphaera
species, and the pathway of “carbohydrate metabolism” were improved by LDA exposure, indicating the better carbohydrate degradation and energy utilization.
Furthermore, correlation analysis indicated the microbial community contributing to SCFAs production was enriched upon LDA exposure, associating with
increased concentrations of short-chain and branched-chain fatty acids (caproate, 2-methyl butyrate and 4-methyl valerate). A multivariate linear fitting model
analysis highlighted that caproate was positively correlated with two genera (Faecalibacterium and Allisonella) and four differentially expressed genes (ZNF134,
TBX5, NEU4 and SEMA6D), which were all significantly increased upon LDA exposure. Collectively, our study indicates that the growth-promoting effect of LDA
exposure in early life is associated with the shifts of colonic microbiota to increase utilization of carbohydrates and energy, enhanced SCFAs production and
colonic functions.
© 2019 . Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Previous studies have showed that the exposure of antibiotics in
prepubertal children may lead to overweight, obesity or diabetes
[1–3]. Although the altered microbiota and metabolism in childhood
have been proposed to play a causal role in overweight and metabolic
diseases, such as obesity and diabetes in later life [4–7], the underlying
mechanism is still limited. Gut microbiota is involved in the digestion
of proteins, lipids and carbohydrates in small intestine, and ferment-
ing indigestible polysaccharides into low-molecular-weight metabo-
lites, e.g. short-chain fatty acids (SCFAs) in large intestine. Particularly,
SCFAs represent 10% of the human daily energy intake [8] and
modulate crucial biological process, such as hepatic gluconeogenesis
[9] and cholesterol biosynthesis [10–12] et al. Although metagenomic
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approaches have facilitated characterization of bacteria responsible
for SCFAs production [13], studies addressing the link between gut
microbiota and SCFAs and their role in host metabolism and growth
are still limited.

The sub-therapeutic use of antibiotics in animal feed has been
widely shown to promote feed intake and rapid growth [14]. Pigs
possess similar structure and physiology of gastrointestinal tract [15],
as well as microbiome as human beings [16], representing a good
animal model for studying host interaction with gut microbiota in
response to antibiotics. In this study, therefore, weaned piglets fed
with or without antibiotics were employed to determine growth
phenotypes, gutmicrobiota, SCFAs and colonic transcriptomes, further
correlation and co-occurrence analysis were conducted across
microbiota, SCFAs and gene expressions.

2. Materials and methods

2.1. Animals and diets

The study was approved by the Sichuan Agricultural University animal welfare
committee and carried out in accordancewith theNational Research Council's Guide for
the Care and Use of Laboratory Animals. Twenty-eight female piglets with body weight
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at 6.50±0.20 kgwereweaned at 21 day-old-age, and randomly divided into two groups,
receiving basic diet (n=14) and diet supplementedwith LDA (n=14), respectively. LDA
group was applied by adding the premix of chlortetracycline (10% purity) and
virginiamycin (50% purity) at 750 mg/kg and 50 mg/kg diet, respectively. The dietary
formulation was indicated in Supplementary file 1: Table S1.

Throughout the study, the feed supplied to the piglets were recorded daily.
Individual piglet BWand feed disappearancewasmeasuredweekly to calculate average
daily gain (ADG) and average daily feed intake (ADFI). For testing the digestibility of
nutrients, during the thirdweek, chromium oxide (Cr2O3)was added in each diet at 3 g/
kg, a 4-d adaptation and 3-d collection of feces were conducted. The dry matter
digestibility (DMD), energy digestibility (ED), crude protein digestibility (CPD) and
crude fat digestibility (CFD) were determined and calculated as before [17]. Diarrhea
score was recorded as our previous method [18]. After 28 days exposure of LDA, the
contents of ileum and colon from piglets were obtained after euthanasia and flash
frozen in liquid nitrogen. Theweights of internal organswere recorded at dissection and
relative weights of internal organs to body weights were calculated.

2.2. Targeted metabolomics of SCFAs detection

The concentrations of SCFAs, such as acetate, propionate, butyrate, valerate and
caproate and short branched-chain fatty acids (SBCFAs), such as isobutyrate, 2-methyl
butyrate, isovalerate and 4-methyl valerate were analyzed for the contents of both
ileum and colon (Supplementary file 1: Table S2). The optimized UPLC-QTRAP-MS/MS
method for more sensitive and accurate quantitation of SCFAs was employed in our
study with some modifications [19]. With a single set of optimized reaction conditions,
3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to
convert SCFAs to their 3-nitrophenylhydrazones derivatives, which showed excellent
in-solution chemical stability. Agilent 1100 UPLC system (Agilent, USA) coupled to a
4500 QTRAP triple-quadrupole mass spectrometer (AB Sciex, USA) equipped with the
electrospray ionization (ESI) source was used for measuring SCFAs. The chromato-
graphic separations were performed on a Waters BEH C18UPLC column (2.1×100 mm,
1.7 mm). The UPLC-MS/MS was operated in the negative-ion mode with a detection
range of m/z 100–600. UPLC/MRM-MS data were acquired using the Analyst 1.5
software and processed using the MultiQuant 1.2 software (AB Sciex, USA). All the
detailed experiment operations and parameters are shown Supplementary file 2.

2.3. Bacterial load by quantitative PCR (qPCR)

Total DNAwas extracted from gut content for each sample using CTAB/SDSmethod.
DNAwas finally re-suspended in 50 μl DES (DNase/Pyrogen-FreeWater) andmeasured
by Qubit 3.0 Fluorometer. Each PCR reaction mixture (20 μl) contained 5 μl of template
DNA, 10 μl SuperReal PreMix Plus (SYBR Green, TIANGEN, FP205), and 1.5 μl of each
primer (10 μM; Forward: 5 ′-CCTACGGGAGGCAGCAG-3 ′ ; Reverse:5 ′-
TTACCGCGGCTGCTGGCAC-3′). The qPCR reactions were performed in triplicate under
thermal cycler conditions of 15min at 95°C, and 39 cycles of 10 s at 95°C, 30 s at 55°C and
32 s at 72°C in a CFX Connect™ Real-Time PCR Detection System (BioRad). All results
were normalized and calculated using the ΔCt method.

2.4. DNA extraction, PCR amplification of 16S rRNA gene, amplicon sequence and sequence
data processing

Total genome DNA was extracted from contents of ileum and colon using CTAB/SDS
method. DNA concentration measured by Qubit 3.0 Fluorometer and purity were
monitored on 1% agarose gels. According to the concentration, DNAwas diluted to 1 ng/μl
using sterile water. 16S rRNA genes of distinct regions (V3-V4) were amplified used
specific primer (357F-806R) with the barcode. All PCR reactions were carried out with
Phusion High-Fidelity PCR Master Mix (New England Biolabs). Mix same volume of 1×
loading buffer (contained SYB green) with PCR products and operate electrophoresis on
2% agarose gel for detection. Samples with bright main strip between 400–450 bp were
chosen for further experiments. PCR products were mixed in equidensity ratios. Then,
mixture PCR products were purified with Qiagen Gel Extraction Kit (Qiagen, Germany).
Sequencing libraries were generated using TruSeq DNA PCR-Free Sample Preparation Kit
(Illumina, USA) followingmanufacturer's recommendations and index codeswere added.
The library quality was assessed on the Qubit 2.0 Fluorometer (Thermo Scientific) and
Agilent Bioanalyzer 2100 system. At last, the library was sequenced on an Illumina
HiSeq2500 platform and 250 bp paired-end reads were generated.

2.5. 16S rRNA amplicon sequencing data analysis

WithinQIIME2 (v2018.8) [20], sequenceswere quality-filtered and de-noised using
the Divisive Amplicon Denoising Algorithm 2 (DADA2) [21]. Taxonomy was assigned
using the 99% identity SILVA (release 119) V3-V4 classifier [22]. All the ribosomal
sequence variants (RSVs) were identified as features across all samples without
clustering. The feature table, rooted phylogenetic tree, representative sequences and
metadata from QIIME2 were then exported for further analysis in R (v3.4.2). Shannon
index and observed OTUs index were calculated with QIIME2 for Alpha diversity
analysis, which presented complexity of species diversity for samples, and it was
displayed with R. The difference tests of Alpha diversity for different groups were
performed using Wilcoxon Rank Sum Test. Beta diversity was calculated using Bray-
Curtis distance andWeighted UniFrac distance by the R package VEGAN (V2.5–3) [23],
respectively. Differences in beta diversity were identified using Analysis of Similarity
(ANOSIM) and effect size was indicated by an R-value (between−1 and + l, with a
value of 0 representing the null hypothesis [24]), and PERMANOVA test leveraged by
stress and effect size R2 between 0 and 1. Community structure difference based on beta
diversity was visualized using principal coordinate analysis (PCoA) by R package ape
and non-metric multi-dimensional scaling (NMDS) method by R package VEGAN.
Significantly different biomarkers at phylum and genus levels were identified using
STAMP (v2.1.3) [25]. Significant correlations were indicated with an absolute Pearson's
correlation coefficient above 0.50 and a P-value under 0.05. A self-developed Perl script
was used to depict the links between genera and SCFAs with significant correlations.
The co-occurrence networks were then visualized using Cytoscape 2.8.3. The PICRUSt
was employed to predict community functional structure in our study [26], and the
significantly different biomarkers including KEGG pathway and genes were identified
by LEfSe [27], using selection criteria of alpha value for the factorial Kruskal-Wallis test
of 0.05 and the linear discriminant analysis score of N2.5. The statistical significance for
all analysis was set as Pb.05.

2.6. RNA isolation, quantification, library preparation, sequencing and transcriptome
analysis of intestinal tissues

Total RNAs of colon tissues were extracted by QIAGEN RNeasy Protect Animal Blood
Kit (Qiagen, Germany). RNA degradation and contamination were monitored on 1%
agarose gels. RNA purity was checked using the NanoPhotometer spectrophotometer
(IMPLEN, CA, USA). RNA concentration was measured using Qubit RNA Assay Kit in
Qubit 2.0 Flurometer (Life Technologies, CA, USA). RNA integrity was assessed using the
RNANano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies,
CA, USA). A total amount of 1.5 μg RNA per sample was used as input material for the
RNA sample preparations. Sequencing libraries were generated using NEBNext UltraTM
Directional RNA Library Prep Kit for Illumina (NEB, USA) following manufacturer's
recommendations. Briefly, mRNA was purified from total RNA using poly-T oligo-
attached magnetic beads. Fragmentation was carried out using divalent cations under
elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X). First
strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase (RNaseH-). Second strand cDNA synthesis was subsequently performed
using DNA Polymerase I and RNase H. In the reaction buffer, dNTPs with dTTP were
replaced by dUTP. Remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After adenylation of 3′ ends of DNA fragments,
NEBNext Adaptor with hairpin loop structure were ligated to prepare for hybridization.
In order to select cDNA fragments with right length, the library fragmentswere purified
with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB,
USA) was used with size-selected, adaptor-ligated cDNA at 37°C for 15min followed by
5 min at 95°C before PCR. Then PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers and Index (X) Primer. At last, productswere purified
(AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100
system. From these libraries, 150-bp paired-end and strand-specific sequence reads
were produced with Illumina HiSeq Xten. Tophat2 (v 2.1.0) was employed for
performing read mapping to Sus scrofa genome reference (v11.1) [28]. The gene
expression values were normalized by the number of metric fragments per kilobase of
exon region permillionmapped reads (FPKM) using Cufflinks (version 2.2.1) [29]. DEGs
were obtained with an adjusted P-value cutoff b=0.05 and an absolute fold-change of
N = 2. GO enrichment of DEGs was performed using hypergeometric test according to
Sus scrofa background and the results were visualized using GOplot package in R [30].
Multivariate Linear Fitting Model was employed to investigate the association among
SCFAs, gut microbes and DEGs using R package lm. The formula in our model is as
follows:

M � aS þ bF þ c

Where M is the concentration of SCFAs for all samples, S is the abundance of
microbes for all samples, F is gene expression values of DEGs for all samples, a and b are
coefficients, c is the intercept. The evaluation thresholds formodelswere adjusted R2N=
0.8 and Pb0.05.

2.7. Validation of DEG expression by real-time PCR

The total RNA was reversely transcribed by using PrimeScript RT reagent Kit with
gDNA Eraser (Takara). Real-time PCR reaction mixture (10 μl) included fresh TB Green
Premix Ex TaqII (5 μl), ROXReferenceDye II (0.2 μl), the primers (2 μl) and cDNA (2.8 μl).
Real-time PCR reactions were performed as follows: one cycle (42°C 5 min); one cycle
(95°C 10 s); forty cycles (95°C 5 s, 60°C 34 s); one cycle (95°C 15 s, 60°C 1min and 95°C
15 s). The standard curve of each genewas run in duplicate and three times for obtaining
reliable amplification efficiency values. The correlation coefficients (r) of all the
standard curveswere 0.99, and the amplification efficiency valueswere between 90 and
110%. All RT-PCR target gene expression was normalized to the expression of β-action
and the relative quantification of gene expressionwas analyzed using the 2ΔΔCtmethod.
The sequences of primers, length of the products and GenBank accession were
presented in Table S3.
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3. Results

3.1. Growth performance and nutrients digestibility

After 4 weeks of treatment, the growth-promoting effect of LDA
was observed, as indicated by the increased ADG (P=.026) and ADFI
(P=.001). Meanwhile, the significantly increased nutrient digestibil-
ity such as DMD, ED, CPD and CFD (all Pb.001), but decreased DS value
(0.41 vs. 0.64, Pb.001) were observed in the LDA group (Fig. 1a). In
addition, the relative and absoluteweights of kidneywere increased in
LDA groups (Supplementary file 3: Fig.S1).

3.2. SCFAs and SBCFAs

Regardless of LDA treatment, there were significantly higher
(Pb.001) levels of SCFAs and SBCFAs, such as acetate, propionate,
isobutyrate, butyrate, isovalerate and valerate in the content of colon
than in ileum (Supplementary file 3: Fig. S2). A principal component
analysis (PCA) on both SCFAs and SBCFAs showed the considerable
divergence between CON and LDA-treated piglets, regardless of
intestinal sections (Fig. 1b). Particularly, the concentrations of SCFAs
including caproate, 2-methyl butyrate and 4-methyl valerate were
significantly increased in the LDA group relative to CON group (two-
sided independent t-test Pb.05, Fig. 1c).

3.3. Bacteria load and microbial diversity

To determinate the effect of LDA on the gut microbiota, the total
bacterial load was analyzed by qPCR for both ileum and colon
contents. The significantly higher quantity of bacterial load was
revealed in the colon content than in the ileum content (Supple-
mentary file 3: Fig.S3). Relative to CON group, the LDA group had
significantly reduced total bacterial load in ileum content
(2.59×1011 vs. 8.85×1011 16S rRNA copies per gram), but not in
colon contents (4.42×1013 vs. 4.23×1013 16S rRNA copies per gram).
We then employed SSU rRNA amplicon sequencing to analyze their
microbial diversity. After quality-filtering, 7,287,313 high quality
reads were acquired from 56 samples, enabling an average coverage
of more than 0.12 million effective reads for each sample with a
standard deviation of 6180 reads (Supplementary file 1: Table S4). A
total of 4214 features were then identified according to DADA2
algorithm using QIIME2 (Supplementary file 1: Table S5). Alpha
diversity analysis was performed for each group to compare the
species diversity within each microbial community. As the Shannon
index and observed OTUs index box plots showed, the diversity of
bacterial OTUs in colon content was significantly greater (Pb.001)
than that in ileum content (Fig. 2a-b). However, no clear difference
of alpha diversity was observed between the LDA and CON groups
for either the colon or ileum content (Fig. 2a-b). Beta diversity
analysis using both Nonmetric Multidimensional Scaling (NMDS)
method, based on Bray-Curtis distance and Principal Coordinate
Analysis (PCoA), as well as Weighted UniFrac distance of Features
across samples, showing the significant shift of microbiota between
ileum and colon contents (ANOSIM R=0.642, P=.001; PERMANOVA
R2=0.262, P=.001) (Fig. 2c-d). Similarly, beta diversity analysis
showed themicrobiota differences between colon and ileum content
within group were more remarkable than that between LDA and
CON group.

3.4. Bacterial abundance and functional implication

We examined the bacterial abundance at different taxonomic
levels. The Firmicutes was the dominant phylum both in colon and
ileum contents. However, the Bacteroidetes was dominant in colon,
while Proteobacteria was dominant in ileum (Fig. 3a). At the genus
level, most of the annotated features belonged to Lachnospiraceae spp.,
Lactobacillus, Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-002
and Clostridium_sensu_stricto_1 in colon, while the dominant genera
were Clostridium_sensu_stricto_1, Actinobacillus, Escherichia-Shigella,
Turicibacter and Lactobacillus in ileum (Supplementary file 3: Fig.S4).
In the ileum content, the relative abundances at the genus level were
less changed upon LDA exposure. The abundance of Sarcina was
significantly decreased (P=.047), whereas the abundance of Anaero-
vibrio was increased (P=.038) in the ileum content of LDA group
(Supplementary file 3: Fig.S5a). In contrast, the abundance of Firmi-
cutes and Actinobacteria were significantly increased (P=.023 & P=
.006, respectively), while the abundance of Bacteroidetes was
decreased (Pb.001) in the colon content of LDA group in comparison
with CON group (Supplementary file 3: Fig. S5b). Consequently, the
Firmicutes/Bacteroidetes value (F/B index) was significantly increased
(P=.009) in colon content of LDA group (Fig. 3b). At the genus level, a
total of 28 significantly different genera with average relative
abundance N0.01% at least in one group was identified in the colon
contents (Supplementary file 1: Table S6). Among these genera, 16
genera were significantly increased, while 12 genera were decreased
(two-sided Welch's t-test Pb.05) in the LDA group compared with
CON group (Fig. 3c).

To further predict the functional changes of microbiota due to
genera shifts upon LDA exposure, we then applied PICRUSt on our
16S rRNA data to compute the relative abundance of KEGG pathways.
The enrichment of two level-2 KEGG pathways were significantly
elevated upon LDA exposure (Fig. 3d, Supplementary file 3: Fig. S6a-
b, Supplementary file 1: Table S7), including “carbohydrate metab-
olism” and “membrane transporters”. Among these pathways, the
pathway of “membrane transporters”was comprised of three level-3
pathways (Supplementary file 1: Table S8), including the “phospho-
transferase system (PTS)”, “ATP-binding cassette (ABC) trans-
porters” and “transporters”. Among the 28 genera that were
markedly changed in colon upon LDA exposure, the contribution
degrees of Collinsella, Blautia, Faecalibacterium, Phascolarctobacter-
ium and Eubacterium for the above pathways were profoundly
improved (Fig. 3e).

3.5. Alteration of SCFAs production associates with gut microbiota shift

We further examined the correlation between microbiota
abundance (Supplementary file 1: Table S9) and SCFAs production.
As a result, the markedly changed SCFAs (2-methyl butyrate, 4-
methyl valerate and caproate) in colon had significant correlations
(absolute Pearson's coefficients N0.50 and Pb.05) with the abun-
dance of each genus (Fig. 4, Supplementary file 1: Tables S10/ S11).
Both in the CoCA and CoCC group, all related genera (Prevotella_2,
Lachnospiraceae_UCG-010, Lachnospiraceae_AC2044_group, Metha-
nobrevibacter, et al.) were positively correlatedwith the three SCFAs.
However, LDA exposure shifted the genera to highly correlate with
the three SCFAs, as illustrated by the co-occurrence networks (Fig.
4). In the control group, the positively correlated genera were
mainly comprised of Prevotellaceae, Spirochaetaceae and Methano-
bacteriaceae, whereas the genera of Prevotellaceae and Spirochaeta-
ceae were not obviously correlated with those three SCFAs in the
LDA group (Fig. 4b), probably due to their significant decrease of
abundance upon LDA exposure. In contrast, the relative abundance
of Methanobrevibacter was relatively increased upon LDA exposure
(Fig. 4c) and the correlation between the Methanobrevibacter
abundance and three SCFAs were strengthened from lowly positive
to highly positive correlation (Fig. 4a-b). In addition, the positive
correlation of Ruminococcaceae and Lachnospiraceae genera to SCFAs
were strengthened upon LDA exposure, despite their abundances
were not significantly changed. As indicated in the co-occurrence
network (Fig. 4a-b), there were 11 genera positively correlating
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with butyrate in LDA group, while only Faecalibacterium, Butyrici-
coccus and Agathobacterwere positively correlating with butyrate in
control group.

3.6. Gut microbiota shift and SCFAs alteration associate with colonic
gene expressions

Considering the role of SCFAs on gene transcription, we further
performed transcriptome analysis on the colonic tissues. We obtained
45.41±7.89 million clean reads per sample, of which 76.65±5.19%
could be aligned to the pig reference genome (Supplementary file 1:
Table S12). Fifty-two DEGs were identified (FCN2, Pb.05), in which 49
were up-regulated upon LDA exposure (Supplementary file 1: Table
S13). GO enrichment analysis indicated 16 DEGs were involved in
biological process of “cell proliferation or normal development”,
“immune response”, “nervous system”. (Supplementary file 1: Table
S14, Fig. 5a). In the “cell proliferation” category, the transcriptions of
all enriched genes were significantly up-regulated upon LDA expo-
sure, including FGF18, TBX5, NR6A1 and NRG1 (Fig. 5b). Five genes
were involved in the “immune response” category, including up-
regulated gene expressions of CXCL10, BPI, C6 and MX1, and down-
regulated gene expressions of CD200. In addition, we found the up-
regulated genes in relation with neuron cells, including FGF14, NRG1,
NTRK2 and EFNA5 (Fig. 5b). Multivariate Linear Fitting Model analysis
was further performed across SCFAs, gut microbes and DEGs. As a
result, acetate, propionate, butyrate and caproate showed complex
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correlation networkswith DEGs and gutmicrobes (Fig. 5c). Especially,
caproate was positively correlated with two genera (Faecalibacterium
and Allisonella) and 4 DEGs (ZNF134, TBX5, NEU4 and SEMA6D), which
were all significantly increased upon LDA exposure (Fig. 5c). A qPCR
validation was then performed on the expression of 9 DEGs that also
displayed significant correlation with the changed SCFAs and genera
(Supplementary file 1: Table S15). Two genes (ZNF134 and NR6A1)
were confirmed with significant up-regulation (Pb.05), while the rest
genes also showed the same tendency of increased expression upon
antibiotics exposure (Supplementary file 1: Table S16).

4. Discussion

The early exposure to antibiotics has been shown to increase risk of
overweight or obesity later in childhood [3,31,32], but the causal role
of this exposure is not clear. We proposed that the changing intestinal
microbiota by antibiotics may influence intestinal function and host
metabolism and the related phenotypes. The growth-promoting effect
of LDA in pigmodelmimics the similar consequences in human-being,
in which infants grow faster with increasing risks of overweight or
obesity when receiving antibiotics treatment in early life [33]. In this
study, we did find the sub-therapeutic use of antibiotics markedly
increased the food intake and growth rate of pigs. Furthermore, we
found LDAmarkedly decreased the total bacterial load in ileumbut not
in colon, probably due to that the total bacterial load in the colon
content is much higher than in the ileum content and LDA was not
sufficient to change the absolute numbers of bacterial cells. Despite of
that, although the bacterial load of ileum content was significantly
reduced, neither SCFA production nor ileumgene expression (data not
shown) was affected. In contrast, the altered structure of the colonic
microbiota is associated with changes of the SCFA production and
colonic gene expression. These results highlighted the significance of
colon as a major organ for the nutritional effects of microbiota, as
indicated by themarkedly increased F/B index and themembers of the
Firmicutes and Actinobacteria phyla include species degrading the
dietary carbohydrates [34,35]. Likewise, the increased Methano-
sphaera species in colon upon LDA exposure has been associated
with obesity [36] and host energy extraction from indigestible
polysaccharides [37], explaining the higher digestibility of DM in
this study.

In addition, the increased abundances of Blautia, Collinsella,
Eubacterium, Faecalibacterium and Phascolarctobacterium in colon
upon LDA exposure enhanced pathways such as “carbohydrate
metabolism”, “phosphotransferase system (PTS)” and “ATP-binding
cassette transporters”, based on the PICRUSt prediction on functional
changes. PTS is related to the uptake and phosphorylation of
multiform carbohydrates and involved in microbial degradation of
carbohydrates in Firmicutes and Actinobacteria, enhancing cells to
import simple sugars over carbohydrates [38]. Meanwhile, the ATP-
binding cassette transporterswere suggested to increase the transport
of lipids and be overrepresented in obese children. These results
implied LDA exposure induced the functional changes of microbiota
for improving carbohydrates utilization and energy metabolism, and
being beneficial for host growth. In addition, the role of gutmicrobiota
in influencing host food intake has been proposed [39], in this study,
the increased food intake by LDA exposure may be also related to the
changing microbiota, particularly the decreased abundance of Prevo-
SCFAs for the colon contents with LDA exposure. Circle nodes represent microbe genera and d
absolute Pearson correlation above 0.50 [blue thin line indicates general positive correlation (0
indicates general negative correlation (−0.7 b Rb−0.50)]with a significance level under 0.05. C
distinct color are in direct proportion to the direction of correlation (red means negative corr
strength of correlation. (c) The relative abundances of related genera between CoCC and CoCA
CoCA: Colon content of LDA group.
tellaceae upon LDA exposure has been shown to negatively correlate
with ghrelin [40], a GIT neuropeptide acting on hypothalamic brain
cells to increase appetite, gastric acid secretion and gastrointestinal
motility [41].

As key bacterial metabolites by gut bacteria, SCFAs play crucial role
in linking microbiota composition and various biological effects [12].
The quantitative correlation between microbiota abundance and
SCFAs levels revealed the stronger correlation of Ruminococcaceae,
Lachnospiraceae and Methanobrevibacter, less correlation of Prevotella
9, Prevotella 2, Prevotella 1 and Sphaerochaetawith 2-methyl butyrate,
4-methyl valerate and caproate, which were significantly increased in
the colon content of piglets upon LDA exposure. The members of Ru-
minococcaceae are associated with fermenting indigestible polysac-
charides into SCFAs, the increase in these taxa leaded to more calorie
uptake through increasing the availability of SCFAs [40]. In addition,
LDA exposure shifted more genera to be positively correlated to
acetate, propionate and butyrate, including Faecalibacterium, Lachnos-
piraceae group and Clostridium that are well-known SCFAs producing
bacteria belonging to the Firmicutes phylum [42–44]. Therefore, the
microbial community in colon contributing to SCFAs production was
enriched upon LDA exposure.

Considering the crucial role of SCFAs in gut health and immunology
[45,46], we further performed Multivariate Linear Fitting Model
analysis among the altered SCFAs, gut microbiota and DEGs. Caproate,
as one of the SCFAs in reducing pathogenic colonization in the gut [47],
showed a complex correlation networkwith DEGs and gutmicrobiota.
LDA exposure significantly up-regulated the immunity-related ex-
pressions of genes such as CXCL10, BPI, C6 and MX1 for the host
immunity [48,49] and antiviral effect [50,51], also genes (FGF14,
FGF18, NRG1, TBX5, NR6A1, NTRK2 and EFNA5) related to cell
proliferation and nervous development. These results on transcription
alteration indicate the LDA exposure influences the gut signaling and
function, which could be ascribed to the shifting of microbiota
structure and changes of fermentation metabolites in the colon
caused by LDA, interacting with local tissue and cell functions.

In summary, the growth-promoting effect of LDA exposure in early
life could be related to the increasing food intake and digestibility of
nutrients, which are associated with microbiota shifts for SCFA
production and better energy utilization, as well as host–microbe
interactions. These findings reveal the potential mechanism on the
risk of childhood overweight caused by antibiotic exposure in early
life.
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rRNA amplicon data is linked to SRP118553, accession numbers
SRR6058541, SRR6058555, SRR6058585-SRR6058593, SRR6058597,
SRR6058602-SRR6058603, SRR6058605-SRR6058608, SRR6058610,
SRR6058624, SRR6058626, SRR6058628, SRR6058631-SRR6058639,
SRR6058641-SRR6058646, SRR6058653- SRR6058671. The strand-
specific RNA-seq data is linked to accession numbers SRR6746572
-SRR6746582.
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