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Multi-omics profiling highlights lipid
metabolism alterations in pigs fed low-dose
antibiotics
Yue Hu1†, Yihe Zhang1†, Cong Liu1, Rui Qin1, Desheng Gong1, Ru Wang2, Du Zhang1, Lianqiang Che2,
Daiwen Chen2, Guizhong Xin3, Fei Gao1,4 and Qi Hu1*

Abstract

Background: In order to study the relations of hepatocellular functions, weight gain and metabolic imbalance
caused by low-dose antibiotics (LDA) via epigenetic regulation of gene transcription, 32 weaned piglets were
employed as animal models and randomly allocated into two groups with diets supplemented with 0 or LDA
(chlorotetracycline and virginiamycin).

Results: During the 4 weeks of the experiment, LDA showed a clear growth-promoting effect, which was
exemplified by the significantly elevated body weight and average daily gain. Promoter methylome profiling using
liquid hybridization capture-based bisulfite sequencing (LHC-BS) indicated that most of the 745 differential
methylation regions (DMRs) were hypermethylated in the LDA group. Several DMRs were significantly enriched in
genes related with fatty acids metabolic pathways, such as FABP1 and PCK1. In addition, 71 differentially expressed
genes (DEGs) were obtained by strand-specific transcriptome analysis of liver tissues, including ALOX15, CXCL10
and NNMT, which are three key DEGs that function in lipid metabolism and immunity and which had highly
elevated expression in the LDA group. In accordance with these molecular changes, the lipidome analyses of serum
by LC-MS identified 38 significantly differential lipids, most of which were downregulated in the LDA group.

Conclusions: Our results indicate that LDA could induce epigenetic and transcriptional changes of key genes and
lead to enhanced efficiency of lipid metabolism in the liver.

Keywords: Weaned piglets, Low-dose antibiotics, Serum lipidome, Liver methylome, Liver transcriptome

Background
Accumulating evidence has shown a strong crosstalk be-
tween gut microbiota and host metabolism [1–4], which can
provide clues as to how subtherapeutic antibiotics can pro-
mote animal growth [5] and they are associated with risks of
obesity in prepubertal children [6–8]. In particular, studies
have shown that antibiotic exposure can further affect liver

functions due to the gut-liver axis [9]. However, genome-
scale molecular changes of the liver under antibiotic expos-
ure have not been comprehensively studied.
In recent years, crosstalk between the gut microbiota

and host epigenome has also been proposed. Many stud-
ies have demonstrated that the products of bacterial fer-
mentation, short chain fatty acids (SCFAs), can affect
histone modifications by inhibiting mammalian histone
deacetylases (HDAC) [10, 11]. As a major epigenetic
mechanism, DNA methylation has been shown to regu-
late the transcriptional activity of genes and related
physiology [12–14]. DNA methylation can also be
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affected by gut microbiota, considering microbiota-
produced substances from gut microbiota, such as folate,
cobalamin, pyridoxine, could contribute to the one-
carbon metabolism that provides methyl groups. DNA
methylation is a key epigenetic mechanism of transcrip-
tion regulation, which can be affected by microbiota and
metabolite changes in the gut, as previously suggested in
our and other studies [15, 16]. Considering the gut-liver
communications, we hypothesize that the DNA methy-
lome of the liver will be affected upon low-dose antibiotic
(LDA) treatment, thereby affecting liver gene expression.
Considering the anatomical and physiological

similarities between pigs and humans [17], pigs rep-
resent an ideal animal model for studying the
growth- and obesity-enhancing effects of antibiotic
intervention in infants. In the present study, we
aimed to profile the transcriptome and genome-
wide DNA methylation of liver tissues in LDA-
treated pigs. Along with the analyses of phenotypic
data and serum lipidome, we characterized

extensive changes in the plasma lipidome, gene ex-
pression and promoter methylation in the liver that
were elicited by LDA treatment.

Results
Growth promotion of LDA- treated piglets
In the present study, we randomly classified 32 Duroc ×
Landrace × Yorkshire (DLY) female weaned piglets into
two groups, either raised with spontaneous microbial
colonization as the control (CON) group or treated with
two types of broad-spectrum LDA, i.e., chlortetracycline
and virginiamycin (see Methods). During the 4 weeks of
the experimental period, growth phenotypes and diar-
rhoea index (DI) [18, 19] for all the DLY piglets were
gathered in each week (Table S1) and analysed by SPSS
20.0 (SPSS, Inc.) with a two-tailed independent t-test.
During 4 weeks of treatment, a growth-promoting effect
was observed starting from the first week, as exemplified
by the elevated body weight (BW) and average daily gain
(ADG) of the LDA group. In the fourth week, the LDA

Fig. 1 Growth phenotypes of piglets from the LDA and CON groups. Box plots of body weight (a), average daily feed intake (b), diarrhoea index
(c) and relative weight (RW) of different organs (d) during the 4 weeks of the experimental period between the LDA and CON groups (two-tailed
independent t-test, *P-value< 0.05, **P-value< 0.01). RW was obtained from absolute organ weight divided by body weight. The diarrhoea index
was expressed as the average daily grade of diarrhoea (three check points per day)
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group showed the most significant difference comparing
to the CON group (Fig. 1a, b). In contrast, the occur-
rence of diarrhoea was significantly decreased in the
LDA group (Fig. 1c). On the other hand, there were no
obvious differences in the relative weight of different or-
gans between the two groups, suggesting that such
growth-promotion was not restricted to specific organs
but the whole body (Fig. 1d).

Serum lipidome analyses
In addition to growth phenotypes, metabolic parameters
from blood were also examined. Total cholesterol (TC)
was significantly lower in the LDA group than that in
the CON group (Fig. S1), which was analyzed by SPSS
20.0 (SPSS, Inc.) with a two-tailed independent t-test,
while the remaining indexes, including alkaline phos-
phatase (ALP), UREA, glucose (GLU), triglyceride (TG),
alanine aminotransferase (ALT), aspartate amino trans-
ferase (AST), total bilirubin in serum (TBIL), total bile
acid (TBA) and glutamyl transpeptidase (GGT), showed
no significant differences (Table S2). Based on this re-
sult, we also carried out lipidome analyses of serum by
LC-MS in ESI+ and ESI- modes separately. Orthogonal
partial least square discriminant analysis (OPLS-DA)
was performed to determine the metabolomic distinc-
tion between the LDA and CON groups, which showed
clear separations of lipid profiles between the two
groups (Fig. 2a). Then, a total of 38 significantly differ-
ential lipids were identified based on a criterion that the
values of variable important in the projections (VIP)
were more than 1.0, while the false discovery rate (FDR)
-adjusted P values were less than 0.05 [20]. Furthermore,
these lipids were annotated by the mass of molecular
and fragment ions using the database of the lipid maps
(http://www.lipidmaps.org/). Consistent with the bio-
chemical analysis of TC, the majority of the differential
lipids were significantly downregulated in the LDA
group (Fig. 2b, Table S3). Further, KEGG pathway ana-
lysis using MetaboAnalyst (https://www.metaboanalyst.
ca/) indicated that most of these differential lipids were
enriched in the pathways of glycerophospholipid metab-
olism and glycosylphosphatidylinositol (GPI)-anchor bio-
synthesis, while fewer were enriched in the pathways of
“linoleic acid metabolism”, “alpha linolenic acid metabol-
ism”, “glycine, serine and threonine metabolism”, and
“arachidonic acid metabolism” (Fig. 2c, Table S4).

Liver transcriptome changes in LDA-treated piglets
We then applied a strand-specific mRNA-seq strategy to
examine the gene expression profiles of liver tissues
from all 32 piglets. A total of 55.4 million paired-end se-
quencing reads of 150 bp were generated, resulting in
4.1–5.3 gigabyte (GB) of clean sequencing data for each
sample with low-quality reads filtered out (Table S5).

The clean reads were aligned to the reference genome
(Sscrofa11.1), with total mapped rates ranging from 85.1
to 89.1% among the 32 samples.
Based on these data, a hierarchical clustering analysis using

AU/BP values was performed (distance: correlation, cluster
method: average) and most samples were clustered into two
root-separated parts according to different groups (Fig. 3a).
To clarify which genes were altered, we then performed
pair-wise comparisons between the two groups. As a result,
differentially expressed genes (DEGs) were obtained under
the criterion of |fold change (FC)| > 1.5 and FDR < 0.05 (Fig.
3b, Table S6). Considering that there was clearly a global
transcriptomic difference between the two groups, the num-
ber of DEGs was only 71 (24 downregulated DEGs and 47
upregulated DEGs compared to the CON group). We then
calculated the coefficient of variation for each group, defined
as the value of the standard deviation divided by the average.
As a result, a high intra-group variation was observed (Fig.
3c), which could explain the limited DEGs. Then these DEGs
were put forward to KEGG enrichment analysis using Allen-
richer [21], which indicated these DEGs were significantly in-
volved in the immune system and metabolic pathways
(FDR < 0.05) (Table S7). Moreover, the pathway of glycine,
serine and threonine metabolism was also enriched by these
differential lipids mentioned above, suggested some kind of
regulatory relations between DEGs and differential lipids.
As exemplified by these key upregulated genes, the

liver transcriptome analyses indicated highly elevated
functions of lipid biosynthesis and metabolism for these
LDA-treated piglets. Despite this complication, among
these DEGs, we found two significantly differential
genes, ALOX15 (log2(FC) = 1.05635, FDR = 0.007295)
and NNMT (log2(FC) = 1.09953, FDR = 0.007295), that
were highly elevated for expression in the LDA group.
Both genes function in lipid metabolism, especially the
ALOX15 gene, whose encoded enzyme (lipoxygenase)
acts on various polyunsaturated fatty acid substrates to
generate various bioactive lipid mediators [22]. CXCL10
(log2(FC) = 1.4118, FDR = 0.007295), an important anti-
microbial gene, was also significantly upregulated in the
LDA group (Fig. 3d). The alterations of gene expression in
these important DEGs indicated an important role in the
regulation of lipid metabolism elicited by LDA treatment.
Besides, we used quantitative RT-PCR (qRT-PCR) to val-
idate the mRNA expression levels of these three key genes,
and the results indicated significant upregulation in the
LDA group compared to the CON group (Fig. S2).
We further examined the correlation between DEGs

fpkm and differential lipids abundance from all the sam-
ples. As a result, we found that there were several DEGs
have complex correlations with these differential lipids
(Fig. 3e). Especially for the CXCL10, which was an anti-
microbial gene and significantly up-regulated expression
in LDA group mentioned above, had negative correlations
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with two kinds of glycerophosphoethanolamines (PE) and
four kinds of glycerophosphoglycerols (PS). Furthermore,
the followed correlated gene, CAMK2N1, was also involved
in immunity and acted as a tumor suppressive role in pros-
tate cancer cells [23]. It was suggested that these lipids may
play negative roles in immunity. As to other DEGs, such as
DISP3, has positive correlations with several kinds of triacyl-
glycerols (TG) and diradylglycerols (DG). Moreover, DISP3
encodes a sterol-sensing domain-containing protein that
links cholesterol metabolism [24], which further implied the
close correlation of DISP3 and lipid metabolism.

Genome-wide liver DNA methylome
To thoroughly profile the genome-wide DNA methyla-
tion of pigs in a more cost-effective way, we adapted a

liquid hybridization capture-based bisulfite sequencing
(LHC-BS) approach [25, 26], whose efficacy has previ-
ously been comprehensively demonstrated in the human
genome. Based on NCBI Refseq gene annotation of the
pig reference genome (Sscrofa11.1), the gene promoters
were denoted as regions from upstream 2000 bp to
downstream 1000 bp of the transcriptional start sites
(TSS). A total of 32,163 capture probe regions with a
total length of 156.1MB were customized, which en-
abled the coverage of 21,234 genes (69.98% of the total
RefSeq genes) in the NCBI database. We then profiled
the promoter methylome of 8 liver samples (see
Methods). We generated an average of 14.6 GB clean
data for each sample, reaching a mean sequencing depth
of 37 ×, with an average bisulfite conversation rate of

Fig. 2 Lipidome comparison showed that altered lipids were mainly involved in glycerophospholipid metabolism. a Orthogonal partial least
square discriminant analysis (OPLS-DA) of serum lipidome between the CON group (green circle) and LDA group (blue box). b Heatmap showing
the concentrations of all 38 differential lipids between the two groups. The bars on top of the heatmap display the cluster result of these lipids. c
KEGG pathway analysis of the differential lipids by MetaboAnalyst (http://www.MetaboAnalyst.ca/)
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Fig. 3 (See legend on next page.)
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98.77%. The BSMAP algorithm [27] was then applied to
align the sequencing reads back to the reference gen-
ome, resulting in 58.5% of the sequencing reads being
uniquely mapped. As a result, on average, 6.47 million
CpG sites and 72.4 million non-CpG sites were covered
for at least 5× depth (Table S8). Then, a hierarchical
clustering analysis was performed to examine the overall
methylation status of the whole genome based on com-
monly covered cytosine sites across the eight liver sam-
ples (Fig. 4a). The two groups were not clearly
separated, probably owing to small sample size and indi-
vidual epigenomic variations. Nevertheless, gene-specific
methylation divergence may be revealed between the
two groups. Therefore, we carried out comparisons be-
tween the two groups to screen for DMRs. A scatter plot
on the average levels of these DMRs showed that most
DMRs were hypermethylated in the LDA group (Fig.
4b). This approach generated a total number of 745
DMRs (FDR < 0.01), that were extensively distributed
across the whole genome (Fig. 4c). Based on Refseq gene
annotation of the pig genome, 714 DMR-associated
genes (DMRGs) were identified, including genes con-
taining DMRs both in their promoters or gene bodies
(Table S9). KEGG analyses indicated that key genes in-
volved in metabolic pathways were significantly
enriched, including FABP1 and PCK1 in the PPAR sig-
naling pathway (Fig. 4d).

Discussion
Antibiotic usage represents a major concern in global
public health. Numerous pieces of evidence have indi-
cated that overuse of antibiotics is linked to adverse
health conditions such as obesity, inflammation and
host-microbe imbalance [28–30]. In particular, even
brief antibiotic treatments can have long-term effects on
microbiota composition, while changes in the gut micro-
biome may affect the energy harvest from diet and en-
ergy storage and expenditure through fatty acid
oxidation [31]. Dysbiosis has been associated with many
disease states including autoimmune diseases, metabolic
diseases, and malnutrition. Therefore, alterations to
microbiota compositions caused by antibiotics are likely
to have additional health consequences, specifically asso-
ciated with weight gain and metabolic imbalance, as well

as susceptibility to diseases. Indeed, early childhood anti-
biotic exposure is associated with an increased risk for
excessive weight gain, allergies and inflammatory bowel
diseases (IBD) [32, 33].
Based on previous observations, we hypothesize that the

liver epigenome could be affected by the intestinal micro-
biome through the gut-liver axis, which may further affect
liver cellular functions by epigenetic transcription regulation.
Previously, many gut microbiota studies were based on ro-
dent models [34, 35], because their complete microbiota
modulation is more easily manipulated, either by germ-free
rearing following inoculation with specific gut microbiome
or treatments with long-term and broad-spectrum antibi-
otics. In our study, pig was used as the animal model for its
high similarities with humans in many aspects, such as me-
tabolism and body development [36, 37], as well as gut
microbiota [15]. We treated these piglets with LDAs (chlor-
tetracycline and virginiamycin), resulting in significantly pro-
moted host growth. We then intended to comprehensively
profile the DNA methylome and transcriptome of liver tis-
sues as well as the serum lipidome, to fully understand the
effects of LDA on host metabolism that could lead to growth
promotion and even overweight or obesity.
After a four-week experimental period, phenotypic dif-

ferences were present between the LDA and CON
groups through data analysis by SPSS 20.0 (SPSS, Inc.)
and the TC level was significantly downregulated in the
LDA group. Next, to guarantee an unbiased screening,
we first put forward to untargeted lipidome detection of
serum from the two groups, and then we adapted ap-
plied strand-specific RNA-seq technology, which pro-
vides a more accurate estimate of transcriptional
expression compared to commonly use non-stranded
RNA-seq methodology [38]. Regarding the pig liver
DNA methylome, we used the LHC-BS approach [25] to
profile the single-base-pair resolution promoter methy-
lome. Although diverse technologies have been devel-
oped in the past decades, target- capture represents a
more cost-effective and comprehensive approach of
genome-wide analysis.
As a result, our results have shown considerable alter-

ations of the transcriptome and DNA methylome of
liver, as well as the serum lipidome, which mainly
highlighted molecular changes of genes functioning in

(See figure on previous page.)
Fig. 3 Comparison of the transcriptome of liver samples between the LDA and CON groups. a Hierarchical clustering analyses of total gene
expression levels from LDA and CON groups by the “Pvclust” algorithm. The approximately unbiased (AU) P-value (%) and bootstrap probability
(BP) P-value are shown. b Scatter plot of the average expression levels of all DEGs. c Covariate analysis between the transcriptome data from the
two groups. d Violin plots of expression levels from the three key DEGs (ALOX15, NNMT and CXCL10) in the two groups. Black bars indicate the
boxplot, and white dots indicate the mean value. e Correlation networks of DEGs and differential lipids. Correlation analysis among them is
shown in this network. The cyan blocks present DEGs and the green circles are lipids. The blue lines indicate positive correlations and the red
lines are negative correlations. And lines with different degrees of thickness indicate different degrees of correlations between these DEGs
and lipids
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lipid metabolism of these piglets. The lipidome analysis
results suggested the whole tendency of downregulated
differential lipids in the LDA group compared to the
CON group. For the liver transcriptome analysis, there
are three key DEGs (ALOX15, CXCL10 and NNMT)
with the function of lipid metabolism and immunity.
ALOX15, as one of the various LOX-isoforms, exhibits
multiple catalytic activities. They oxygenate polyenoic
fatty acids to hydroperoxy derivatives but also exhibit
lipohydroperoxidase activity (sometimes also called hy-
droperoxide isomerase activity), which converts lipid

hydroperoxides to secondary lipid peroxidation products
[39]. 15-LOX-1 also plays a major role in the formation
of arachidonic anti-inflammatory products, known as
lipoxins [40], which suggested its regulatory role in the
immune system. Studies show that the ALOX12/15 fam-
ily of enzymes and their pro-and anti-inflammatory me-
tabolites in obese humans with and without type 2
diabetes (T2D). ALOX12 expression is positively corre-
lated with the expression of CXCL10 [41], which is a key
antimicrobial gene that is involved in the TNF signaling
pathway. In addition, increasing NNMT expression in

Fig. 4 Comparison of promoter methylome of liver samples between the LDA and CON groups. a Hierarchical clustering analysis of the average
DNA methylation levels in promoter regions by the “Pvclust” algorithm. The approximately unbiased (AU) P-value (%) and bootstrap probability
(BP) P-value are shown. b Scatter plot of the average methylation levels of DMRs in the LDA and CON groups. c The pie chart showing the
distribution of DMRs in different chromosomes. d KEGG pathways enriched by the DMR-associated genes
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the liver could stabilize the Sirtuin 1 protein, an effect
that is required for glucose and cholesterol metabolism
to decrease the levels of serum and liver cholesterol and
liver triglycerides in mammals [42, 43]. Therefore, up-
regulated gene expression level of NNMT in the liver
could be the reason for the lower concentrations of
serum lipids in the LDA group, which might be more
beneficial for maintaining homeostasis of glyceropho-
spholipids in mammalian cells and even better for body
growth and development [44]. However, limitation of
our present study might be that we used a limited num-
ber of samples, especially for methylome analysis. The
complexity of the pig genome might also be the reason
for high intra-group individual variations, which blurred
the real differences.
Additionally, methylome analyses indicated that

dozens of genes containing DMRs were significantly
enriched in metabolic pathways, including the FABP1
gene in the PPAR signaling pathway, which encodes fatty
acid binding protein that binds LCFAs and other hydro-
phobic ligands. Studies have indicated that FABP1 is es-
sential for proper lipid metabolism in differentiated
enterocytes, particularly concerning fatty acid uptake
and its basolateral secretion [45]. Additionally, the PCK1
gene, which is involved in both the PPAR signaling path-
way and metabolic pathway, is a main control point for
the regulation of gluconeogenesis. The expression of this
gene can be regulated by insulin, glucocorticoids, gluca-
gon, cAMP, and diet and it has multiple relationships
with several metabolic diseases [46, 47].

Conclusions
In conclusion, our results still provide preliminary evi-
dence that LDA treatment could induce epigenetic
changes in key gene pathways, especially the lipid me-
tabolism pathway, which further induced transcriptional
alterations in liver tissue. These important functional
DEGs (ALOX15, CXCL10 and NNMT) related to lipid
metabolism and immunity are highly correlated with the
serum lipidome results, which showed significantly de-
creased levels of lipids in the serum. Together with the
highly promoted growth phenotype, we can conclude
that LDA- treatment has induced a systematic genome-
level of changes in liver tissues and contributed to a
more efficient metabolism of lipids.

Methods
Pig model and sample collections
Thirty-two female DLY piglets (without litters) were
supplied by Sichuan Agricultural University and raised
in their hog house with the temperature control at 23–
25 °C, where the environments and production perform-
ance were stable and the feeding management was stan-
dardized. These piglets were randomly allocated into

two groups with diets supplemented with 0 or low-dose
of antibiotics (CON vs. LDA), which were kept separ-
ately in two different pens of the hog house. Two piglets
in the same group were kept in one cage and were fed 4
times a day (8:00, 12:00, 16:00 and 20:00), and the feed-
ing status of piglets was checked every 2 h. The feeding
trough was a rectangular four-mouth long trough, and
the drinking water tank was the nipple type. All the pig-
lets were fed and drank freely and weighed with an
empty stomach every Monday morning during the entire
experimental period of 4 weeks.
Two types of antibiotics were mixed in the fodder ac-

cording to government standards (chlortetracycline was
mixed in fodder with a dose of 75 g/1000 kg and virgi-
niamycin was 25 g/1000 kg). These two groups of piglets
were fed separately and the LDA group were fed with
LDAs at age of 21 ± 2 days. The feedings were continuous
for 4 weeks, with the CON group fed with the normal fod-
der at the same time. Blood samples were collected 1 day
before euthanasia and serum was separated by centrifuga-
tion at 3500 rpm for 15 mins and then kept at 4 °C. At the
end of the experimental period, all of these piglets were
intravenously injected with pentobarbital sodium (15mg/
kg of BW) before jugular exsanguination. After the abdo-
men was exposed, the abdominal adipose, lung, liver,
spleen, heart, kidney, stomach, small intestine colon, and
pancreas were quickly resected and their wet weights were
recorded. Small liver sample pieces were collected and
saved at − 80 °C after being snap-frozen in nitrogen for
the subsequent experiments, as well as tissues from other
organs for more research.

Metabolic parameters
The detections of metabolic parameters, such as the
serum concentrations of ALP, urea, GLU, TG, ALT,
AST, TC, TBIL, TBA and GGT were performed based
on the previous study [48], with an automatic biochem-
ical analyser (Model 7020, Hitachi, Tokyo, Japan) and
corresponding commercial kits (Sichuan Maker Biotech-
nology Inc., Chengdu, China). There was less than 5%
variation between the intra-assay and inter-assay coeffi-
cients for each assay.

Serum lipidome analysis
Internal standards were dissolved by DCM: MeOH (2:1,
v/v, 0.1% BHT) and mixed at the final concentration of
30 μg/ml FFA (17:0), 40 μg/ml LPC (17:0), 70 μg/ml PC
(17:0/17:0) and 300 μg/ml TG (17:0/17:0/17:0). For the
preparation of lipid extracts, 30 μl thawed serum samples
were mixed with 30 μl of the internal standard mixture,
followed by 540 μl DCM: MeOH (2:1, v/v, 0.1% BHT)
and then vortexed thoroughly. After adding 100 μl of
H2O, 100 μl of the lower organic phase was collected by
centrifuging at 14,000 g for 10 min, and samples were
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reconstituted with 1 ml ACN: IPA (1:1, v/v) before
UHPLC-Orbitrap analysis. For method validation, qual-
ity control (QC) samples were prepared by pooling small
aliquots of serum samples to ensure broad metabolite
coverage. The precision was determined by intra- and
inter-day variability. For the UHPLC conditions, the in-
jection volume was 2 μl for each sample and the column
was a waters ACQUITY BEH C18 column (2.1 × 100
mm, 1.7 μm) with a temperature of 55 °C. The index of
the mobile phase was set as follows: solvent A: 40:60
water/ACN (0.1% formic acid and 10 mM ammonium
acetate, only in positive ion mode), solvent B: 90:10 IPA/
CAN. The gradient was 0–13min 30–80% B; 13–20 min
80–90% B; 20–21min 90–100% B; 21–26 min 100% B;
re-equilibrate: 10 min, with a flow rate of 200 μl/ml.
These raw data were subjected to SIEVE 2.1 software
(Thermo Fischer Scientific) for pretreatment. Finally,
three- dimensional matrices consisting of sample infor-
mation, peak intensity, retention time (RT) of peak and
the mass-to-charge ratio (m/z) were obtained. Multivari-
ate statistical analysis was performed using SIMCA-P +
14.1 (Umetrics, Umeå, Sweden) software with the results
of OPLS-DA. Differential lipids were selected based on
the comparisons between the LDA and CON groups
with the filter conditions of VIP > 1 and P-value< 0.05.
KEGG analysis of these differential lipids was performed
by MetaboAnalyst (https://www.metaboanalyst.ca/).

Library construction for strand-specific mRNA sequencing
RNAs were extracted by TRIzol and quantified on a
Qubit®3.0 fluorometer (Thermo Fisher Scientific,
Cat#Q33216). A total amount of 1.5 μg of RNA per liver
sample was used as input material for preparations. Se-
quencing libraries were constructed using the NEBNext®
UltraTM RNA library Prep Kit for Illumina® (NEB, USA)
following the manufacturer’s recommendations. In brief,
mRNA was purified from the total RNA using poly-T
oligo-attached magnetic beads. Fragmentation was car-
ried out using divalent cations under elevated
temperature in NEBNext First Strand Synthesis Reaction
Buffer (5×). First strand cDNA was synthesized using a
random hexamer primer and M-MuLV Reverse Tran-
scriptase (RNaseH). Second strand cDNA synthesis was
subsequently performed using DNA polymerase I and
RNaseH, with the dUTP instead of dTTP. The
remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After adenylation of
the 3′ ends of DNA fragments, NEBNext Adaptor with
hairpin loop structure was ligated to prepare for
hybridization. To select cDNA fragments of the right
length, the library fragments were purified with an
AMPure XP system (Beckman Coulter, Beverly, USA).
Then 3 μl of USER Enzyme (NEB, USA) was incubated
with size-selected, adaptor-ligated cDNA at 37 °C for 15

min followed by 5 min at 95 °C before PCR, which
allowed selective degradation of the second cDNA
strand containing dUTP for the reservation of the tran-
script direction and strand-specific information. PCR
was then performed with Phusion High-Fidelity DNA
polymerase, universal PCR primers and index primers.
Finally, the products were purified (AMPure XP system),
and the library quality was assessed on the Agilent Bioa-
nalyzer 2100 system. The clustering of the index-coded
samples was performed on a cBot Cluster Generation
System using a HiSeq4000 PE Cluster Kit (Illumina) ac-
cording to the manufacturer’s instructions. After cluster
generation, the library preparations were sequenced on
an Illumina Hiseq4000 platform and 150 bp paired-end
reads were generated.

Strand-specific mRNA data analysis
The raw reads of the 32 RNA samples were processed
by removing the adaptor sequences and low-quality se-
quences (low quality threshold (default [5]), low quality
rate (default [0.5]), N rate threshold (default [0.05]), and
PCR duplications were removed. Clean reads were
aligned to the pig reference genome (Sscrofa11.1) using
Tophat2 (Version 2.0.12) [49]. Next, the Cufflinks (Ver-
sion 2.2.1) tool was used to quantify transcript abun-
dance in terms of fragment per kilobase (Kb) of exon
model per million mapped fragment (FPKM) following
the default options, and added the -G/−−GTF -guide,
which was quantitated against reference transcript anno-
tations (Sscrofa11.1). FPKM of each sample was counted
to estimate the expression levels of the transcripts by the
Cuffdiff package [50]. The analysis was conducted using
a binomial test on variance estimated and size factor
normalized data [51]. All obtained P-values were ad-
justed for FDR due to multiple testing procedures used
to control for type I error [52, 53]. Finally, we used
|FC| > 1.5 and FDR < 0.05 to identify genes with signifi-
cantly expressed changes in liver samples from the CON
group versus the LDA group.

LHC-BS library construction and sequencing
To ensure the power of statistical analysis, 4 samples
were randomly selected in each group (8 samples in
total) for LHC-BS library construction. DNA from the
liver tissues from these piglet samples was extracted by
the DNeasy Blood & Tissue Kits (QIAGEN, Cat#69504)
according to the manufacturing instruments and quanti-
fied by a Qubit®3.0 fluorometer (Thermo Fisher Scien-
tific, Cat#Q33216). Promoter-targeted LHC-BS was
performed as previously described [25]. Briefly, 1 μg of
DNA per sample was processed by fragmentation using
Covaris E210 Ultrasonicator (Covaris, Inc., 294,448),
followed by blunt end repair, 3′-adenylation, and 5′-
methylcytosine index adapter ligation. Then, 250 ng of
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DNA from each of three/four adaptor-ligated libraries
was pooled together for the liquid hybridization capture
procedure. The hybridization probe was synthesized and
purchased from Roche Nimblegen Incorporation. Finally,
the captured DNA was eluted in 50 μl of 10M NaOH
with incubation at room temperature for 10 min. The
supernatant was transferred into a new tube and neutral-
ized with 50 μl of 10M HAc and then purified using a
MiniElute PCR Purification Kit (QIAGEN, Cat#28004).
For bisulfite conversion, 200 ng of unmethylated λDNA
was added into each captured product and then ZYMO
EZ DNA Methylation-Gold Kit™ (ZYMO, Cat#D5005)
was employed to convert unmethylated cytosine into
uracil according to the instructions. After purification,
PCR was carried out with JumpStart™ Taq DNA Poly-
merase (Sigma, Cat#D9307) using the program of 94 °C
for 30s, 15 cycles of 94 °C for 10 s, 60 °C for 30 s, 72 °C
for 40s then prolonged at 72 °C for 5 min and held at
12 °C. The PCR products were purified using AMPure
XP beads (Agencourt, Cat#A63881) and were quantified
by the Agilent Bioanalyzer 2100 system (Agilent Tech-
nologies, CA, USA). After the qPCR assays, the LHC-BS
libraries were sequenced by the Illumina Hiseq Xten
platform with a sequencing strategy of paired-end 150
base pairs.

Data analysis of promoter-targeted LHC-BS
After removing the adapter sequences and filtering out
the low quality reads, the LHC-BS sequencing data were
directly aligned to the pig reference genome (Sus
scrofa11.1) using BSMAP 2.73 [27]. The DNA methyla-
tion level of a specific cytosine was then calculated as
the number of reads supporting methylation divided by
the total number of reads covering that cytosine. DMRs
were identified by metilene [54] with usage of the sliding
window strategy: commonly covered CpG sites with se-
quencing depth ≥ 5X between two groups of samples
were selected as candidate sites. Then, the first CpG
with significantly differential methylation (P-value <
0.05) was used as an initial locus of DMR, and the candi-
date sites were merged into a candidate DMR according
to the following criteria: the distance between two neigh-
bouring candidate CpG sites ≤300 bp; all the candidate
CpG sites in the candidate DMR maintain the same
methylation direction (hyper- or hypo-); a candidate
DMR must harbour at least 5 candidate CpG sites; for
each of the above candidate DMRs, a chi-square test was
performed to filter out the regions with a P-value > 0.05
and average methylation levels between two samples <
20%. Pvclust was used to perform hierarchical cluster
analysis via function hclust in R [55], and for each clus-
ter in hierarchical clustering, quantities called P-values
were calculated via multiscale bootstrap resampling.

Quantitative RT-PCR (qRT-PCR)
Total RNAs were extracted by TRIzol and quantified on
a Qubit®3.0 fluorometer that mentioned above. For
cDNA synthesis, 400 ng of RNA was reversed tran-
scribed using the RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific, Cat#K1621). qRT-PCR
was performed using SuperReal Premix Plus (SYBR
Green) (TIANGEN, Cat#FP205) on a StepOnePlus™
Real-Time PCR System (Thermo Fisher Scientific,
Cat#4376600) using 96-well optical reaction plates. Sam-
ples from seven piglets per group were analyzed and all
the PCR primers were designed using the Primer Prem-
ier 5.0 software (PREMIER Biosoft, CA), which were
listed in Table S10. Relative gene expression values were
calculated by the comparative CT (threshold cycle)
method (ΔΔCT method, Applied Biosystems) [56]. The
comparative CT method gives the amount of target gene
normalized to an endogenous reference gene (GAPDH)
and to a relative calibrator sample. Data analysis and sta-
tistics were performed by Wilcoxon test and data with
p-value < 0.05 were considered statistically significant.

Correlation analysis
Correlations between DEGs and differential lipids have
an absolute Pearson’s correlation above 0.50 with a sig-
nificance level under 0.05, and these correlations were
transformed into links between genera and SCFAs in the
co-occurrence network using self-develop perl script.
The co-occurrence networks were then visualized using
Cytoscape 2.8.3.
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