27 research outputs found

    Effects of Solar Radiation on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation

    No full text
    The purpose of this study was to develop a novel method to dramatically improve the production efficiency of sweet potatoes (Ipomoea batatas (L.) Lam.) by elucidating the effect of solar radiation stress on the growth of sweet potato in a multilayer cultivation system. Twenty-five pots planted with sweet potato vine seedlings were arranged in three layers and cultivated for 160 days while supplying liquid fertilizer to the root zone. While solar radiation in the middle and lower layers decreased to 69% and 45% of that in the upper layer, respectively, the yield of tuberous roots was 0.89 kg/pot in the upper layer, 0.79 kg/pot in the middle layer, and 0.66 kg/pot in the lower layer. As a result, the productivity of tuberous roots reached 10.5 kg/m2, 4.4 times that of conventional farming. On the other hand, the amounts of leaves and stems increased in the lower layer than in the upper layer, and the biomass energy yield (photosynthetic efficiency) was 2.8% in the upper layer, 3.7% in the middle layer, and 5.1% in the lower layer. Leaves in the lower layer with less solar radiation had a lower polyphenol content and increased the amounts of low-brightness leaves. In contrast, the upper leaves were found to contain more polyphenols and have brighter, smaller leaves. These results suggest that the yield can be further increased by optimizing solar radiation stress by using the multilayer cultivation method

    Alteration of microbial composition in the skin and blood in vasculitis

    No full text
    Abstract Vasculitis is a systemic autoimmune disease characterized by leukocyte infiltration into blood vessels. Various microorganisms have been associated with the pathogenesis of vasculitis; however, the causal microbial agents and underlying mechanisms are not fully understood, possibly because of the technical limitations of pathogen detection. In the present study, we characterized the microbiome profile of patients with cutaneous vasculitis using comprehensive metagenome shotgun sequencing. We found that the abundance of the SEN virus was increased in the affected skin and serum of patients with vasculitis compared to healthy donors. In particular, the abundance of SEN virus reads was increased in the sera of patients with cutaneous arteritis. Among the bacteria identified, Corynebacteriales was the most differentially associated with vasculitis. Linear discriminant analysis effect size also indicated differences in the microbial taxa between patients with vasculitis and healthy donors. These findings demonstrate that vasculitis is associated with considerable alteration of the microbiome in the blood and skin and suggest a role for the infectious trigger in vasculitis

    Transcriptional regulation of an insulin-sensitizing adipokine adipolin/CTRP12 in adipocytes by Krüppel-like factor 15.

    Get PDF
    Obese states characterized by chronic inflammation are closely linked to the development of metabolic dysfunction. We identified adipolin/CTRP12 as an insulin-sensitizing and anti-inflammatory adipokine. Although obese conditions down-regulate adipolin expression, its molecular mechanism is largely unknown. Here we show that the transcriptional regulator Krüppel-like factor (KLF) 15 is involved in the regulation of adipolin expression in adipocytes. White adipose tissue from diet-induced obese (DIO) mice showed decreased expression of KLF9 and KLF15 among several KLFs, which was accompanied by reduced expression of adipolin. In cultured 3T3L1 adipocytes, treatment with TNFα significantly reduced the mRNA levels of KLF9, KLF15 and adipolin. Adenovirus-mediated overexpression of KLF15 but not KLF9 reversed TNFα-induced reduction of adipolin expression in adipocytes. Conversely, gene targeting ablation of KLF15 attenuated adipolin expression in adipocytes. Expression of KLF15 but not KLF9 enhanced the promoter activity of adipolin in HEK293 cells. Pretreatment of 3T3L1 adipocytes with the JNK inhibitor SP600125, but not p38 MAPK inhibitor SB203580 blocked the inhibitory effects of TNFα on adipolin and KLF15 expression. These data suggest that adipose inflammation under conditions of obesity suppresses adipolin expression via JNK-dependent down-regulation of KLF15 in adipocytes

    Association of circulating C1q/TNF-related protein 1 levels with coronary artery disease in men.

    No full text
    OBJECTIVE: Obesity is a major risk factor for cardiovascular disease. Recent evidence demonstrates that dysregulation of fat-derived hormones, also known as adipokines, is linked with the pathogenesis of obesity-related disorders including coronary artery disease (CAD). Here, we investigated whether circulating level of an adipokine C1q/TNF-related protein (CTRP) 1 is associated with the prevalence of CAD. METHODS AND RESULTS: Consecutive 76 male CAD patients were enrolled from inpatients that underwent coronary angiography. Sixty four healthy male subjects served as controls. Plasma CTRP1 concentration was determined by enzyme-linked immunosorbent assay. CTRP1 levels were correlated positively with systolic blood pressure (BP) and triglyceride levels, and negatively with HDL cholesterol levels in all subjects. Plasma levels of CTRP1 were significantly higher in CAD patients than in control subjects (CAD: 443.3±18.6 ng/ml, control: 307.8±21.5 ng/ml, p<0.001). Multiple logistic regression analysis with body mass index, systolic BP, glucose, total cholesterol, HDL cholesterol, triglyceride, adiponectin and CTRP1 revealed that CTRP1 levels, together with systolic BP and HDL cholesterol, correlated with CAD. CONCLUSIONS: Our data indicate the close association of high CTRP1 levels with CAD prevalence, suggesting that CTRP1 represents a novel biomarker for CAD

    Health assessment of rice cultivated and harvested from plasma-irradiated seeds

    No full text
    Abstract This study provides the health effects assessment of rice cultivated from plasma-irradiated seeds. The rice (Oryza sativa L.) cultivated from seeds with plasma irradiation showed a growth improvement (slope-ratios of with plasma to without plasma were 1.066, 1.042, and 1.255 for tiller, and earing, and ripening periods, respectively) and an 4% increase in yield. The cultivated rice was used for repeated oral administrations to mice for 4-week period. Distilled water and rice cultivated from seeds without plasma irradiation were also used as control. The weights of the lung, kidney, liver, and spleen, with corresponding average values of 0.22 g, 0.72 g, 2.1 g, and 0.17 g for w/ plasma group and 0.22 g, 0.68 g, 2.16 g, and 0.14 g for w/o plasma group, respectively, showing no effect due to the administration of rice cultivated from plasma-irradiated seeds. Nutritional status, liver function, kidney function, and lipid, neutral fat profiles, and glucose metabolism have no significant difference between with and without plasma groups. These results show no obvious subacute effects were observed on rice grains cultivated and harvested from the mother plant that experienced growth improvement by plasma irradiation. This study provides a new finding that there is no apparent adverse health effect on the grains harvested from the plasma-irradiated seeds

    Cardiac myocyte-derived follistatin-like 1 prevents renal injury in a subtotal nephrectomy model

    No full text
    Heart disease contributes to the progression of CKD. Heart tissue produces a number of secreted proteins, also known as cardiokines, which participate in intercellular and intertissue communication. We recently reported that follistatin-like 1 (Fstl1) functions as a cardiokine with cardioprotective properties. Here, we investigated the role of cardiac Fstl1 in renal injury after subtotal nephrectomy. Cardiac-specific Fstl1-deficient (cFstl1-KO) mice and wild-type mice were subjected to subtotal (5/6) nephrectomy. cFstl1-KO mice showed exacerbation of urinary albumin excretion, glomerular hypertrophy, and tubulointerstitial fibrosis after subtotal renal ablation compared with wild-type mice. cFstl1-KO mice also exhibited increased mRNA levels of proinflammatory cytokines, including TNF-α and IL-6, NADPH oxidase components, and fibrotic mediators, in the remnant kidney. Conversely, systemic administration of adenoviral vectors expressing Fstl1 (Ad-Fstl1) to wild-type mice with subtotal nephrectomy led to amelioration of albuminuria, glomerular hypertrophy, and tubulointerstitial fibrosis, accompanied by reduced expression of proinflammatory mediators, NADPH oxidase components, and fibrotic markers in the remnant kidney. In cultured human mesangial cells, treatment with recombinant FSTL1 attenuated TNF-α-stimulated expression of proinflammatory cytokines. Treatment of mesangial cells with FSTL1 augmented the phosphorylation of AMP-activated protein kinase (AMPK), and inhibition of AMPK activation abrogated the anti-inflammatory effects of FSTL1. These data suggest that Fstl1 functions in cardiorenal communication and that the lack of Fstl1 production by myocytes promotes glomerular and tubulointerstitial damage in the kidne

    Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury

    No full text
    It is well-established that exercise diminishes cardiovascular risk, but whether humoral factors secreted by muscle confer these benefits has not been conclusively shown. We have shown that the secreted protein follistatin-like 1 (Fstl1) has beneficial actions on cardiac and endothelial function. However, the role of muscle-derived Fstl1 in proliferative vascular disease remains largely unknown. Here, we investigated whether muscle-derived Fstl1 modulates vascular remodelling in response to injury. The targeted ablation of Fstl1 in muscle led to an increase in neointimal formation following wire-induced arterial injury compared with control mice. Conversely, muscle-specific Fstl1 transgenic (TG) mice displayed a decrease in the neointimal thickening following arterial injury. Muscle-specific Fstl1 ablation and overexpression increased and decreased, respectively, the frequency of BrdU-positive proliferating cells in injured vessels. In cultured human aortic smooth muscle cells (HASMCs), treatment with human FSTL1 protein decreased proliferation and migration induced by stimulation with PDGF-BB. Treatment with FSTL1 enhanced AMPK phosphorylation, and inhibition of AMPK abrogated the inhibitory actions of FSTL1 on HASMC responses to PDGF-BB. The injured arteries of Fstl1-TG mice exhibited an increase in AMPK phosphorylation, and administration of AMPK inhibitor reversed the anti-proliferative actions of Fstl1 on the vessel wall. Our findings indicate that muscle-derived Fstl1 attenuates neointimal formation in response to arterial injury by suppressing SMC proliferation through an AMPK-dependent mechanism. Thus, the release of protein factors from muscle, such as Fstl1, may partly explain why the maintenance of muscle function can have a therapeutic effect on the cardiovascular syste

    Overexpression of KLF15 rescues the reduction of adipolin expression caused by TNFα.

    No full text
    <p>Quantitative RT-PCR method was used for measurement of mRNA levels. <b>A</b>, Adipolin mRNA levels treated with adenovirus expressing KLF9 (Ad-KLF9), KLF15 (Ad-KLF15) or β-galactosidase (Ad-β-gal) at 150 moi for 24 h in 3T3-L1 adipocytes. 3T3-L1 adipocytes were treated with TNFα (10 ng/ml) or vehicle for 24 h. N = 3 in each group. <b>B</b>, Adiponectin mRNA levels treated with Ad-KLF15 or Ad-β-gal at 150 moi for 24 h in 3T3-L1 adipocytes. 3T3-L1 adipocytes were treated with TNFα (10 ng/ml) or vehicle for 24 h. N = 3 in each group.</p
    corecore