505 research outputs found

    Phosphate post-treatment of cerium-based conversion coatings on Al 2024-T3

    Get PDF
    Phosphate post-treatment of cerium-based conversion coatings (CeCCs) on high strength aluminum alloys can significantly improve corrosion resistance. As-deposited CeCCs exhibit corrosion pits and salt tails across the specimen surface after 3 days of exposure, but post-treated CeCCs have withstood 14 days of salt spray exposure without visibly corroding. The morphology, phase, and electrochemical properties of spray deposited CeCCs were affected by post-treatment parameters such as immersion time, solution temperature, and phosphate source. The best performing coatings were post-treated in aqueous orthophosphate solutions for at least 5 min at temperatures of at least 85⁰C. These conditions converted cerium hydroxy/peroxy species in the as-deposited CeCC to hydrated CePO₄ and minimized cracks in the coating. Despite demonstrating the kinetic dependence of processes active during post-treatment, these results suggested that the corrosion resistance of CeCCs was dependent on the coating phase and morphology. Using an aqueous precipitation technique, hydrated CePO₄ coatings were directly deposited onto Al 2024-T3 substrates and compared to as-deposited and post-treated CeCCs. After salt spray exposure, analysis revealed the formation of pits in the alloy where the substrate was exposed by cracks in the directly deposited CePO₄ coating. Post-treated CeCC specimens did not exhibit corrosion at crack/substrate interfaces, indicating that CeCCs can provide electrochemical protection. Post-treated CeCCs also formed an interfacial reaction layer at CeCC/substrate interfaces, a response not observed for directly deposited CePO₄ coatings or as-deposited CeCCs. These results demonstrate that post-treated CeCCs are not static barrier coatings, but respond actively to corrosion --Abstract, page iv

    Microprobe Analyses of the Potassium-Calcium Distribution Relationship in Predentine

    Get PDF
    Apex regions of continuously growing incisors of Wistar rats were quickly dissected, shock-frozen in liquid nitrogen-cooled propane, freeze-dried at -80 °C and infiltrated with Spurr\u27s resin . 400nm thick dry sections were cut with a diamond knife on an ultramicrotome . Relatively flat sections were transferred with an eye lash onto collodium coated aluminum grids. They were flattened with a glass stick and by placing another collodi um coated aluminum grid just on top of the first one, exerting a uniform pressure . After carbon coating the sections were observed using the backscattered and secondary electron signals in a scanning microscope. The predentine was analyzed for calcium and potassium with an energy dispersive x-ray analysis system. The xray spectra revealed in the predentine regions with beginning dentine formation, near the apex, an uneven K-distribution with very low as well as more prominent x-ray peaks. The K peaks were always lower than those of calcium. In areas with advanced dentine formation, prominent K-peaks were always observed. They were normally higher than the Ca-peaks up to a distance of 5- 10 µ.m from the dentine border. Closer to the dentine border the K concentration decreased while the Ca-peak increased. This might indicate that (besides Na) K is used to balance the negative charges of the macromolecules till K is replaced by Ca at the onset of apatite crystal formation

    Temperature-Dependence of Magnetically-Active Charge Excitations in Magnetite across the Verwey Transition

    Get PDF
    We have studied the electronic structure of bulk single crystals and epitaxial films of magnetite Fe3_3O4_4. Fe 2p2p core-level spectra show clear differences between hard x-ray (HAX-) and soft x-ray (SX-) photoemission spectroscopy (PES), indicative of surface effects. The bulk-sensitive spectra exhibit temperature (TT)-dependent charge excitations across the Verwey transition at TVT_V=122 K, which is missing in the surface-sensitive spectra. An extended impurity Anderson model full-multiplet analysis reveals roles of the three distinct Fe-species (A-Fe3+^{3+}, B-Fe2+^{2+}, B-Fe3+^{3+}) below TVT_V for the Fe 2p2p spectra, and its TT-dependent evolution. The Fe 2p2p HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the magnetically distinct sites associated with the charge excitations. Valence band HAXPES shows finite density of states at EFE_F for the polaronic metal with remnant order above TVT_V, and a clear gap formation below TVT_V. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B-Fe2+^{2+} and B-Fe3+^{3+} electronic states, consistent with resistivity and bulk-sensitive optical spectra.Comment: 5 pages, 4 figures Accepted in Physical Review Letter

    Biological phosphate removal using a degradable carbon source produced by hydrothermal treatment of excess sludge

    Get PDF
    The possibility of reusing excess sludge treated by hydrothermal reaction for the purpose of improving the efficiency of the enhanced biological phosphate removal (EBPR) process was investigated. Excess sludge from a fish-processing industry located in Japan was treated in high-temperature and high-pressure water, at a reaction temperature ranging from 200 to 400 degrees C, a pressure of 1.8 to 30MPa and a constant reaction time of 7 min. For the conditions tested, the results showed that when the reaction temperature was increased the content of readily biodegradable substrate in the total CODCr increased. In addition, the amount of some volatile fatty acids (VFAs) produced by the hydrothermal reaction increased as reaction temperature increased. From the phosphate release tests under anaerobic conditions, it was possible to demonstrate that not only the VFAs, but also the readily and slowly biodegradable substrates are used as potential carbon source by the phosphate-accumulating organisms (PAOs).231293
    corecore