25 research outputs found

    New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis

    Get PDF
    A new human hepatocellular carcinoma (HCC) cell line with a highly metastatic potential was established from subcutaneous xenograft of a metastatic model of human HCC in nude mice (LCI-D20) by means of alternating cell culture in vitro and growth in nude mice. The line, designated MHCC97, has been cultivated for 18 months and subcultured for more than 90 passages. The line was showed to be of human origin by karyotype analysis. The cells were either grown as compact colonies (in clusters) or as a monolayered sheet with about 31 h of population-doubling time, exhibited typical malignant epithelial in morphology and were positive for α-fetoprotein (AFP). Flow cytometric analysis of the cell DNA content showed an aneuploid pattern, and its index was 1.5 as compared to that of normal human peripheral blood lymphocytes. Karyotypic analyses of G- and C-banding techniques revealed that all cells presented chromosome abnormalities in number and structure. The number of cell line MHCC97 chromosome ranged from 59 to 65 with a modal number of 60 and 61. At least two common chromosome markers, i(1q) and der(4)t(4;?)(4pter→q35::?), were present in all cells, and deletion of Y chromosome also occurred in all cells. The subcutaneous and intrahepatic xenografts were formed and metastatic lesions in lungs were found after the cells were inoculated into nude mice. The rate of metastasis to lungs was 100% using orthotopic inoculation. Reverse transcription polymerase chain reaction products revealed positive expressions of integrin α5 and β1, urokinase type plasminogen activator receptor (uPAR), vascular endothelial growth factor and nm23-H1 mRNAs of cell line MHCC97. Immunostaining of c-Met, uPAR showed strongly positive in both subcutaneous xenografts and lung metastatic lesions; while positive in xenografts and negative in metastatic lesions for integrin α5, β1. E-cadherin and P53 was not expressed either in xenograft or in the metastatic lesions. PCR products of HBsAg and HBxAg were both positive. The cell line MHCC97 still retained some characteristic features of original tumour. Establishment of cell line MHCC97 should be beneficial to the studies of HCC metastatic mechanisms. © 1999 Cancer Research Campaig

    Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor

    No full text
    The extracellular protease urokinase is known to be crucially involved in morphogenesis, tissue repair and tumor invasion by mediating matrix degradation and cell migration. Hepatocyte growth factor/scatter factor (HGF/SF) is a secretory product of stromal fibroblasts, sharing structural motifs with enzymes of the blood clotting cascade, including a zymogen cleavage site. HGF/SF promotes motility, invasion and growth of epithelial and endothelial cells. Here we show that HGF/SF is secreted as a single-chain biologically inactive precursor (pro-HGF/SF), mostly found in a matrix-associated form. Maturation of the precursor into the active alpha beta heterodimer takes place in the extracellular environment and results from a serum-dependent proteolytic cleavage. In vitro, pro-HGF/SF was cleaved at a single site by nanomolar concentrations of pure urokinase, generating the active mature HGF/SF heterodimer. This cleavage was prevented by specific urokinase inhibitors, such as plasminogen activator inhibitor type-1 and protease nexin-1, and by antibodies directed against the urokinase catalytic domain. Addition of these inhibitors to HGF/SF responsive cells prevented activation of the HGF/SF precursor. These data show that urokinase acts as a pro-HGF/SF convertase, and suggest that some of the growth and invasive cellular responses mediated by this enzyme may involve activation of HGF/SF

    Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor

    No full text
    The extracellular protease urokinase is known to be crucially involved in morphogenesis, tissue repair and tumor invasion by mediating matrix degradation and cell migration. Hepatocyte growth factor/scatter factor (HGF/SF) is a secretory product of stromal fibroblasts, sharing structural motifs with enzymes of the blood clotting cascade, including a zymogen cleavage site. HGF/SF promotes motility, invasion and growth of epithelial and endothelial cells. Here we show that HGF/SF is secreted as a single-chain biologically inactive precursor (pro-HGF/SF), mostly found in a matrix-associated form. Maturation of the precursor into the active \u3b1\u3b2 heterodimer takes place in the extracellular environment and results from a serum-dependent proteolytic cleavage. In vitro, pro-HGF/SF was cleaved at a single site by nanomolar concentrations of pure urokinase, generating the active mature HGF/SF heterodimer. This cleavage was prevented by specific urokinase inhibitors, such as plasminogen activator inhibitor type-1 and protease nexin-1, and by antibodies directed against the urokinase catalytic domain. Addition of these inhibitors to HGF/SF responsive cells prevented activation of the HGF/SF precursor. These data show that urokinase acts as a pro-HGF/SF convertase, and suggest that some of the growth and invasive cellular responses mediated by this enzyme may involve activation of HGF/SF
    corecore