338 research outputs found

    The interaction of HAb18G/CD147 with integrin α6β1 and its implications for the invasion potential of human hepatoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HAb18G/CD147 plays pivotal roles in invasion by hepatoma cells, but the underlying mechanism remains unclear. Our previous study demonstrated that overexpression of HAb18G/CD147 promotes invasion by interacting with integrin α3β1. However, it has never been investigated whether α3β1 is solely responsible for this process or if other integrin family members also interact with HAb18G/CD147 in human hepatoma cells.</p> <p>Methods</p> <p>Human SMMC-7721 and FHCC98 cells were cultured and transfected with siRNA fragments against HAb18G/CD147. The expression levels of HAb18G/CD147 and integrin α6β1 were determined by immunofluorescent double-staining and confocal imaging analysis. Co-immunoprecipitation and Western blot analyses were performed to examine the native conformations of HAb18G/CD147 and integrin α6β1. Invasion potential was evaluated with an invasion assay and gelatin zymography.</p> <p>Results</p> <p>We found that integrin α6β1 co-localizes and interacts with HAb18G/CD147 in human hepatoma cells. The enhancing effects of HAb18G/CD147 on invasion capacity and secretion of matrix metalloproteinases (MMPs) were partially blocked by integrin α6β1 antibodies (<it>P </it>< 0.01). Wortmannin, a specific phosphatidylinositol kinase (PI3K) inhibitor that reverses the effect of HAb18G/CD147 on the regulation of intracellular Ca<sup>2+ </sup>mobilization, significantly reduced cell invasion potential and secretion of MMPs in human hepatoma cells (<it>P </it>< 0.05). Importantly, no additive effect between Wortmannin and α6β1 antibodies was observed, indicating that α6β1 and PI3K transmit the signal in an upstream-downstream relationship.</p> <p>Conclusion</p> <p>These results suggest that α6β1 interacts with HAb18G/CD147 to mediate tumor invasion and metastatic processes through the PI3K pathway.</p

    Increased Birth Weight Associated with Regular Pre-Pregnancy Deworming and Weekly Iron-Folic Acid Supplementation for Vietnamese Women

    Get PDF
    Low birth weight is an important risk factor for neonatal and infant morbidity and mortality and may impact on growth and development. Maternal iron deficiency anaemia contributes to intrauterine growth restriction and low birth weight. Hookworm infections and an iron-depleted diet may lead to iron deficiency anaemia, and both are common in many developing countries. A pilot program of deworming and weekly iron-folic acid supplementation for non-pregnant women aiming to prevent iron deficiency was implemented in northern Vietnam. We compared the birth weight of babies born to women who had had access to the intervention to babies born in districts where the intervention had not been implemented. The mean birth weight of the intervention districts' babies was 124 g more than the control districts' babies; the prevalence of low birth weight was also reduced. These results suggest that providing women with deworming and weekly iron-folic acid supplements before pregnancy is associated with increased birth weight in rural Vietnam. This intervention was provided as a health system integrated program which could be replicated in other at-risk rural areas. If so it could increase the impact of prenatal and antenatal programs, improving the health of both women and newborns

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio

    Aberrant epigenetic changes and gene expression in cloned cattle dying around birth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant reprogramming of donor somatic cell nuclei may result in many severe problems in animal cloning. To assess the extent of abnormal epigenetic modifications and gene expression in clones, we simultaneously examined DNA methylation, histone H4 acetylation and expression of six genes (<it>β-actin</it>, <it>VEGF</it>, <it>oct4</it>, <it>TERT</it>, <it>H19 </it>and <it>Igf2</it>) and a repetitive sequence (<it>art2</it>) in five organs (heart, liver, spleen, lung and kidney) from two cloned cattle groups that had died at different stages. In the ED group (early death, n = 3), the cloned cattle died in the perinatal period. The cattle in the LD group (late death, n = 3) died after the perinatal period. Normally reproduced cattle served as a control group (n = 3).</p> <p>Results</p> <p>Aberrant DNA methylation, histone H4 acetylation and gene expression were observed in both cloned groups. The ED group showed relatively fewer severe DNA methylation abnormalities (p < 0.05) but more abnormal histone H4 acetylations (p < 0.05) and more abnormal expression (p < 0.05) of the selected genes compared to the LD group. However, our data also suggest no widespread gene expression abnormalities in the organs of the dead clones.</p> <p>Conclusion</p> <p>Deaths of clones may be ascribed to abnormal expression of a very limited number of genes.</p

    Expression of Human Frataxin Is Regulated by Transcription Factors SRF and TFAP2

    Get PDF
    Friedreich ataxia is an autosomal recessive neurodegenerative disease caused by reduced expression levels of the frataxin gene (FXN) due to expansion of triplet nucleotide GAA repeats in the first intron of FXN. Augmentation of frataxin expression levels in affected Friedreich ataxia patient tissues might substantially slow disease progression.We utilized bioinformatic tools in conjunction with chromatin immunoprecipitation and electrophoretic mobility shift assays to identify transcription factors that influence transcription of the FXN gene. We found that the transcription factors SRF and TFAP2 bind directly to FXN promoter sequences. SRF and TFAP2 binding sequences in the FXN promoter enhanced transcription from luciferase constructs, while mutagenesis of the predicted SRF or TFAP2 binding sites significantly decreased FXN promoter activity. Further analysis demonstrated that robust SRF- and TFAP2-mediated transcriptional activity was dependent on a regulatory element, located immediately downstream of the first FXN exon. Finally, over-expression of either SRF or TFAP2 significantly increased frataxin mRNA and protein levels in HEK293 cells, and frataxin mRNA levels were also elevated in SH-SY5Y cells and in Friedreich ataxia patient lymphoblasts transfected with SRF or TFAP2.We identified two transcription factors, SRF and TFAP2, as well as an intronic element encompassing EGR3-like sequence, that work together to regulate expression of the FXN gene. By providing new mechanistic insights into the molecular factors influencing frataxin expression, our results should aid in the discovery of new therapeutic targets for the treatment of Friedreich ataxia

    DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery

    Get PDF
    To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000

    The enhanced X-ray Timing and Polarimetry mission – eXTP: an update on its scientific cases, mission profile and development status

    Get PDF
    The enhanced X-ray Timing and Polarimetry mission (eXTP) is a flagship observatory for X-ray timing, spectroscopy and polarimetry developed by an International Consortium. Thanks to its very large collecting area, good spectral resolution and unprecedented polarimetry capabilities, eXTP will explore the properties of matter and the propagation of light in the most extreme conditions found in the Universe. eXTP will, in addition, be a powerful X-ray observatory. The mission will continuously monitor the X-ray sky, and will enable multiwavelength and multi-messenger studies. The mission is currently in phase B, which will be completed in the middle of 2022

    The Lobster Eye Imager for Astronomy Onboard the SATech-01 Satellite

    Full text link
    The Lobster Eye Imager for Astronomy (LEIA), a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe (EP) mission, was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on 27 July 2022. In this paper, we introduce the design and on-ground test results of the LEIA instrument. Using state-of-the-art Micro-Pore Optics (MPO), a wide field-of-view (FoV) of 346 square degrees (18.6 degrees * 18.6 degrees) of the X-ray imager is realized. An optical assembly composed of 36 MPO chips is used to focus incident X-ray photons, and four large-format complementary metal-oxide semiconductor (CMOS) sensors, each of 6 cm * 6 cm, are used as the focal plane detectors. The instrument has an angular resolution of 4 - 8 arcmin (in FWHM) for the central focal spot of the point spread function, and an effective area of 2 - 3 cm2 at 1 keV in essentially all the directions within the field of view. The detection passband is 0.5 - 4 keV in the soft X-rays and the sensitivity is 2 - 3 * 10-11 erg s-1 cm-2 (about 1 mini-Crab) at 1,000 second observation. The total weight of LEIA is 56 kg and the power is 85 W. The satellite, with a design lifetime of 2 years, operates in a Sun-synchronous orbit of 500 km with an orbital period of 95 minutes. LEIA is paving the way for future missions by verifying in flight the technologies of both novel focusing imaging optics and CMOS sensors for X-ray observation, and by optimizing the working setups of the instrumental parameters. In addition, LEIA is able to carry out scientific observations to find new transients and to monitor known sources in the soft X-ray band, albeit limited useful observing time available.Comment: Accepted by RA

    The chemical compound 'Heatin' stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1-subfamily of nitrilases

    Get PDF
    Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound 'Heatin', containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology
    corecore