140 research outputs found

    Assessing the Contribution of Carbon Emissions Trading in China to Carbon Intensity Reduction

    Get PDF
    This paper assesses the impacts of emissions trading between Jiangxi Province and the Rest of China on the carbon prices, total cost of carbon reduction and GDP loss using a two-region provincial Computable General Equilibrium model developed for China. The results reveal that without emissions trading, the carbon prices in 2020 would be 46.8 USinJiangxiProvinceand23.2US in Jiangxi Province and 23.2 US in the rest of China, leading to GDP loss of 1.07% and 0.79% respectively. However, if emissions trading is allowed between provinces, Jiangxi Province needs to import CO2 emissions allowance from the rest of China. In 2013, the trading amount is 14.30 million ton or 7.84% of total CO2 emissions of Jiangxi Province. In 2020, the trading amount triples as compared to 2013, to a level of 44.85 million ton, accounting for 19.37% of Jiangxi’s total emissions. The results also reveal that the total costs of Jiangxi Province and the whole China would fall due to emissions trading, which is consistent with the theoretical implications. It is found that in the case of emissions trading, the GDP loss in 2020 would be lower for Jiangxi Province, at 0.36% instead of 1.07%.Key words: Domestic carbon emissions trading; 2-regional CGE model; Chin

    Spin Gap in Optimally-doped YBCO

    Full text link
    Spin gap in optimally-doped YBCO was investigated by inelastic neutron scattering. We found that q-integrated spectral weight in the vicinity of the spin gap has a shape of a step function at 10K with sharp resolution-limited onset at 33 meV, i.e. there is no observable spectral weight at 31 meV but full spectral weight at 35 meV. The spin gap does not soften or "fill in" as the temperature is increased to Tc. Above Tc we find no evidence for q-dependent magnetic signal at 35 meV

    Will international emissions trading help achieve the objectives of the Paris Agreement?

    Get PDF
    Under the Paris Agreement, parties set and implement their own emissions targets as nationally determined contributions (NDCs) to tackle climate change. International carbon emissions trading is expected to reduce global mitigation costs. Here, we show the benefit of emissions trading under both NDCs and a more ambitious reduction scenario consistent with the 2 °C goal. The results show that the global welfare loss, which was measured based on estimated household consumption change in 2030, decreased by 75% (from 0.47% to 0.16%), as a consequence of achieving NDCs through emissions trading. Furthermore, achieving the 2 °C targets without emissions trading led to a global welfare loss of 1.4%–3.4%, depending on the burden-sharing scheme used, whereas emissions trading reduced the loss to around 1.5% (from 1.4% to 1.7%). These results indicate that emissions trading is a valuable option for the international system, enabling NDCs and more ambitious targets to be achieved in a cost-effective manner

    Air quality co-benefits from climate mitigation for human health in South Korea

    Get PDF
    Climate change mitigation efforts to reduce greenhouse gas (GHG) emissions have associated costs, but there are also potential benefits from improved air quality, such as public health improvements and the associated cost savings. A multidisciplinary modeling approach can better assess the co-benefits from climate mitigation for human health and provide a justifiable basis for establishment of adequate climate change mitigation policies and public health actions. An integrated research framework was adopted by combining a computable general equilibrium model, an air quality model, and a health impact assessment model, to explore the long-term economic impacts of climate change mitigation in South Korea through 2050. Mitigation costs were further compared with health-related economic benefits under different socioeconomic and climate change mitigation scenarios. Achieving ambitious targets (i.e., stabilization of the radiative forcing level at 3.4 W/m2) would cost 1.3-8.5 billion USD in 2050, depending on varying carbon prices from different integrated assessment models. By contrast, achieving these same targets would reduce costs by 23 billion USD from the valuation of avoided premature mortality, 0.14 billion USD from health expenditures, and 0.38 billion USD from reduced lost work hours, demonstrating that health benefits alone noticeably offset the costs of cutting GHG emissions in South Korea

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies

    VERTECS: 6U CubeSat Mission to Study Star-Formation History by Observation of Visible Extragalactic Background Light

    Get PDF
    We describe an astronomical 6U CubeSat mission VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat). The scientific purpose of VERTECS is to reveal star-formation history of the universe by observation of the extragalactic background light (EBL) in visible wavelengths. Earlier observations by sounding rockets and infrared astronomical satellites have shown that the near-infrared EBL is several times brighter than the integrated light of known galaxies. As candidates for the excess light, first-generation stars in the early universe or low-redshift intra-halo light have been proposed, but it has not been concluded. Since these objects are expected to show different emission spectra in visible wavelengths, precise visible observation is important to reveal the origin of excess light. Since detection sensitivity of the EBL is determined by the product of telescope aperture and field of view, a small wide-field telescope system enables the EBL observation with high sensitivity. In VERTECS mission, we develop a 6U CubeSat equipped with a 3U size telescope optimized for observation of visible EBL. The telescope is composed of lens optics and a CMOS sensor of 3k times 3k array format, which is designed to observe the sky in four photometric bands in 400-800nm. The satellite bus is composed of on-board computer (OBC), electric power system (EPS), communication (COM), attitude determination and control system (ACDS), and thermal structure. Design of OBC and EPS is based on heritage of CubeSats developed at Kyushu Institute of Technology, but deployable solar array wings is added to EPS to supply sufficient power to the VERTECS subsystems. In COM system, S-band is used for command uplink and X-band is used for high-speed downlink of large-size images captured by the telescope. Since the EBL measurement need discrimination of the background light from discrete foreground stars, VERTECS requires 10 arcseconds pointing stability (1 sigma) over 1 minute exposure. In 2022, VERTECS was selected for JAXA-Small Satellite Rush Program (JAXA-SMASH Program), a new program that encourages universities, private companies and JAXA to collaborate to realize small satellite missions utilizing commercial small launch opportunities, and to diversify transportation services in Japan. We have been working on functionality and interface teast using Bread Board Model (BBM), and enviroonmental tests by using the satellite structure thermal model. Launch of the satellite is planned in FY2025. We aim at developing the satellite and obtaining scientific results much more quickly than recent large astronomical-satellite missions
    • 

    corecore