32,220 research outputs found

    Spectrum and Duration of Delayed MeV-GeV Emission of Gamma-Ray Bursts in Cosmic Background Radiation Fields

    Full text link
    We generally analyze prompt high-energy emission above a few hundreds of GeV due to synchrotron self-Compton scattering in internal shocks. However, such photons cannot be detected because they may collide with cosmic infrared background photons, leading to electron/positron pair production. Inverse-Compton scattering of the resulting electron/positron pairs off cosmic microwave background photons will produce delayed MeV-GeV emission, which may be much stronger than a typical high-energy afterglow in the external shock model. We expand on the Cheng & Cheng model by deriving the emission spectrum and duration in the standard fireball shock model. A typical duration of the emission is ~ 10^3 seconds, and the time-integrated scattered photon spectrum is nu^{-(p+6)/4}, where p is the index of the electron energy distribution behind internal shocks. This is slightly harder than the synchrotron photon spectrum, nu^{-(p+2)/2}. The lower energy property of the scattered photon spectrum is dependent on the spectral energy distribution of the cosmic infrared background radiation. Therefore, future observations on such delayed MeV-GeV emission and the higher-energy spectral cutoff by the Gamma-Ray Large Area Space Telescope (GLAST) would provide a probe of the cosmic infrared background radiation.Comment: 5 pages, accepted for publication in Ap

    Neutralino dark matter stars can not exist

    Full text link
    Motivated by the recent "Cosmos Project" observation of dark-matter concentrations with no ordinary matter in the same place, we study the question of the existence of compact objects made of pure dark matter. We assume that the dark matter is neutralino, and compare its elastic and annihilation cross sections. We find that the two cross sections are of the same order of magnitude. This result has a straightforward and important consequence that neutralinos comprising a compact object can not achieve thermal equilibrium. To substantiate our arguments, by solving Oppenheimer-Volkoff equation we constructed a model of the star made of pure neutralinos. We explicitly showed that the condition for the thermal equilibrium supported by the Fermi pressure is never fulfilled inside the star. This neutralino state can not be described by the Fermi-Dirac distribution. Thus, a stable neutralino star, which is supported by the Fermi pressure, can not exist. We also estimated that a stable star can not contain more than a few percents of neutralinos, most of the mass must be in the form of the standard model particles.Comment: published in JHE

    An exactly solvable phase transition model: generalized statistics and generalized Bose-Einstein condensation

    Full text link
    In this paper, we present an exactly solvable phase transition model in which the phase transition is purely statistically derived. The phase transition in this model is a generalized Bose-Einstein condensation. The exact expression of the thermodynamic quantity which can simultaneously describe both gas phase and condensed phase is solved with the help of the homogeneous Riemann-Hilbert problem, so one can judge whether there exists a phase transition and determine the phase transition point mathematically rigorously. A generalized statistics in which the maximum occupation numbers of different quantum states can take on different values is introduced, as a generalization of Bose-Einstein and Fermi-Dirac statistics.Comment: 17 pages, 2 figure

    Heavy surface state in a possible topological Kondo insulator: Magneto-thermoelectric transport on the (011)-plane of SmB6_6

    Full text link
    Motivated by the high sensitivity to Fermi surface topology and scattering mechanisms in magneto-thermoelectric transport, we have measured the thermopower and Nernst effect on the (011)-plane of the proposed topological Kondo insulator SmB6_6. These experiments, together with electrical resistivity and Hall effect measurements, demonstrate that the (011)-plane also harbors a metallic surface with the effective mass in the order of 10-102^2 m0m_0. The surface and bulk conductances are well distinguished in these measurements and are categorized into metallic and non-degenerate semiconducting regimes, respectively. Electronic correlations play an important role in enhancing scattering and also contribute to the heavy surface state.Comment: 4 figures, 1 tabl

    Smoothed Particle Magnetohydrodynamics II. Variational principles and variable smoothing length terms

    Full text link
    In this paper we show how a Lagrangian variational principle can be used to derive the SPMHD (smoothed particle magnetohydrodynamics) equations for ideal MHD. We also consider the effect of a variable smoothing length in the SPH kernels after which we demonstrate by numerical tests that the consistent treatment of terms relating to the gradient of the smoothing length in the SPMHD equations significantly improves the accuracy of the algorithm. Our results complement those obtained in a companion paper (Price and Monaghan 2003a, paper I) for non ideal MHD where artificial dissipative terms were included to handle shocks.Comment: 14 pages, 4 figures, accepted to MNRA
    corecore