32,682 research outputs found

    Three pseudoscalar meson production in e+e−e^+ e^- annihilation

    Get PDF
    We study, at leading order in the large number of colours expansion and within the Resonance Chiral Theory framework, the odd-intrinsic-parity e+e−→π+π−(π0,η)e^+ e^- \rightarrow \pi^+ \pi^- (\pi^0, \eta) cross-sections in the energy regime populated by hadron resonances, namely 3 \, m_{\pi} \lsim E \lsim 2 \, \mbox{GeV}. In addition we implement our results in the Monte Carlo generator PHOKHARA 7.0 and we simulate hadron production through the radiative return method.Comment: 39 pages, 5 figure

    A Note on Positive Energy Theorem for Spaces with Asymptotic SUSY Compactification

    Full text link
    We extend the positive mass theorem proved previously by the author to the Lorentzian setting. This includes the original higher dimensional positive energy theorem whose spinor proof was given by Witten in dimension four and by Xiao Zhang in dimension five

    Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Full text link
    In this paper, we propose a new scenario in which a rapidly-rotating strongly-magnetized pulsar without any surrounding supernova ejecta produces fast radio bursts (FRBs) repeatedly via some mechanisms, and meanwhile, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently-discovered persistent radio source associated with the repeating FRB 121102 in reasonable ranges of the model parameters. In addition, our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all the repeating bursts observed in four years.Comment: 6 pages, 1 figure, ApJ Letters in pres

    Gamma-Ray Burst Afterglows from Realistic Fireballs

    Get PDF
    A GRB afterglow has been commonly thought to be due to continuous deceleration of a postburst fireball. Many analytical models have made simplifications for deceleration dynamics of the fireball and its radiation property, although they are successful at explaining the overall features of the observed afterglows. We here propose a model for a GRB afterglow in which the evolution of a postburst fireball is in an intermediate case between the adiabatic and highly radiative expansion. In our model, the afterglow is both due to the contribution of the adiabatic electrons behind the external blastwave of the fireball and due to the contribution of the radiative electrons. In addition, this model can describe evolution of the fireball from the extremely relativistic phase to the non-relativistic phase. Our calculations show that the fireball will go to the adiabatic expansion phase after about a day if the accelerated electrons are assumed to occupy the total internal energy. In all cases considered, the fireball will go to the mildly relativistic phase about 10410^4 seconds later, and to the non-relativistic phase after several days. These results imply that the relativistic adiabatic model cannot describe the deceleration dynamics of the several-days-later fireball. The comparison of the calculated light curves with the observed results at late times may imply the presence of impulsive events or energy injection with much longer durations.Comment: 18 pages, 10 figures, plain latex file, submitted to Ap
    • …
    corecore