31,727 research outputs found

    Pair loading in Gamma-Ray Burst Fireball And Prompt Emission From Pair-Rich Reverse Shock

    Full text link
    Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic winds/fireballs to avoid the "compactness problem". However, the most energetic photons in GRBs may still suffer from γγ\gamma-\gamma absorption leading to electron/positron pair production in the winds/fireballs. We show here that in a wide range of model parameters, the resulting pairs may dominate those electrons associated with baryons. Later on, the pairs would be carried into a reverse shock so that a shocked pair-rich fireball may produce a strong flash at lower frequencies, i.e. in the IR band, in contrast with optical/UV emission from a pair-poor fireball. The IR emission would show a 5/2 spectral index due to strong self-absorption. Rapid responses to GRB triggers in the IR band would detect such strong flashes. The future detections of many IR flashes will infer that the rarity of prompt optical/UV emissions is in fact due to dust obscuration in the star formation regions.Comment: 8 pages, 2 figures, ApJ accepte

    Identification of the white dwarf companion to millisecond pulsar J2317+1439

    Full text link
    We report identification of the optical counterpart to the companion of the millisecond pulsar J2317+1439. At the timing position of the pulsar, we find an object with g=22.96±0.05g=22.96\pm0.05, r=22.86±0.04r=22.86\pm0.04 and i=22.82±0.05i=22.82\pm0.05. The magnitudes and colors of the object are consistent with it being a white dwarf. By comparing with white dwarf cooling models, we estimate that it has a mass of 0.390.10+0.130.39^{+0.13}_{-0.10} M_{\odot}, an effective temperature of 8077470+5508077^{+550}_{-470} K and a cooling age of 10.9±0.310.9\pm0.3 Gyr. Combining our results with published constraints on the orbital parameters obtained through pulsar timing, we estimate the pulsar mass to be 3.41.1+1.43.4^{+1.4}_{-1.1} M_{\odot}. Although the constraint on the pulsar mass is still weak, there is a significant possibility that the pulsar could be more massive than two solar mass.Comment: 7 pages, 6 figures, accepted for publication in Ap

    GRB Afterglows from Anisotropic Jets

    Full text link
    Some progenitor models of gamma-ray bursts (GRBs) (e.g., collapsars) may produce anisotropic jets in which the energy per unit solid angle is a power-law function of the angle (θk\propto\theta^{-k}). We calculate light curves and spectra for GRB afterglows when such jets expand either in the interstellar medium or in the wind medium. In particular, we take into account two kinds of wind: one (nr3/2n\propto r^{-3/2}) possibly from a typical red supergiant star and another (nr2n\propto r^{-2}) possibly from a Wolf-Rayet star. We find that in each type of medium, one break appears in the late-time afterglow light curve for small kk but becomes weaker and smoother as kk increases. When k2k\ge 2, the break seems to disappear but the afterglow decays rapidly. Thus, one expects that the emission from expanding, highly anisotropic jets provides a plausible explanation for some rapidly fading afteglows whose light curves have no break. We also present good fits to the optical afterglow light curve of GRB 991208. Finally, we argue that this burst might arise from a highly anisotropic jet expanding in the wind (nr3/2n\propto r^{-3/2}) from a red supergiant to interpret the observed radio-to-optical-band afterglow data (spectrum and light curve).Comment: 12 pages + 10 figures, accepted by Ap

    Phase Separation, Competition, and Volume Fraction Control in NaFe1x_{1-x}Cox_xAs

    Full text link
    We report a detailed nuclear magnetic resonance (NMR) study by combined 23^{23}Na and 75^{75}As measurements over a broad range of doping to map the phase diagram of NaFe1x_{1-x}Cox_xAs. In the underdoped regime (xx \le 0.017), we find a magnetic phase with robust antiferromagnetic (AFM) order, which we denote the {\it s}-AFM phase, cohabiting with a phase of weak and possibly proximity-induced AFM order ({\it w}-AFM) whose volume fraction V8V \simeq 8\% is approximately constant. Near optimal doping, at x=0.0175x = 0.0175, we observe a phase separation between static antiferromagnetism related to the {\it s}-AFM phase and a paramagnetic (PM) phase related to {\it w}-AFM. The volume fraction of AFM phase increases upon cooling, but both the N{\'e}el temperature and the volume fraction can be suppressed systematically by applying a cc-axis magnetic field. On cooling below TcT_c, superconductivity occupies the PM region and its volume fraction grows at the expense of the AFM phase, demonstrating a phase separation of the two types of order based on volume exclusion. At higher dopings, static antiferromagnetism and even critical AFM fluctuations are completely suppressed by superconductivity. Thus the phase diagram we establish contains two distinct types of phase separation and reflects a strong competition between AFM and superconducting phases both in real space and in momentum space. We suggest that both this strict mutual exclusion and the robustness of superconductivity against magnetism are consequences of the extreme two-dimensionality of NaFeAs.Comment: 12 pages, 6 figure
    corecore