2,551 research outputs found

    Development of a special multi-wavelength pyrometer for temperature distribution measurements in rocket engines

    Get PDF
    Previously a fast multi-wavelength pyrometer was developed in a collaboration between the Harbin Institute of Technology of China and Rome University of Italy. The main features of the instrument include the use of a dispersing prism and a photodiode array to cover the entire spectral band. Following this experience, a new type of six-target eight-wavelength pyrometer for solid propellant rocket engine plume temperature distribution measurements has been developed. The instrument can record the radiation fluxes of eight wavelengths for six different uniformly distributed points on the target surface, which are well defined by holes on a field stop. The fast pyrometer with a specially designed synchronous data acquisition system can assure that the recorded thermal radiation fluxes of different spectral regions are at the same time and the same true temperature, even with dramatically changed targets

    Two-photon excited photoluminescence in InGaN multi-quantum-wells structures

    Get PDF
    In this work, we report on the two-photon absorption induced luminescence of InGaN multiple quantum wells grown on sapphire. When the sample was excited by femtosecond near-infrared laser pulses at room temperature, an intense luminescence signal peaked at ∼415 nm from the sample was observed, which indicates strong nonlinear optical effect in InGaN quantum well structures. The interferometric autocorrelated luminescence traces were recorded to verify the second order nonlinearity of the luminescence. In addition, the strong second harmonic generation signal of the excitation laser was also observed. The mechanism of the two-photon excited photoluminescence in InGaN quantum wells was discussed.published_or_final_versionpublished_or_final_versio

    Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma

    Full text link
    Currently, considerable resurgent interest exists in the concept of superradiance (SR), i.e., accelerated relaxation of excited dipoles due to cooperative spontaneous emission, first proposed by Dicke in 1954. Recent authors have discussed SR in diverse contexts, including cavity quantum electrodynamics, quantum phase transitions, and plasmonics. At the heart of these various experiments lies the coherent coupling of constituent particles to each other via their radiation field that cooperatively governs the dynamics of the whole system. In the most exciting form of SR, called superfluorescence (SF), macroscopic coherence spontaneously builds up out of an initially incoherent ensemble of excited dipoles and then decays abruptly. Here, we demonstrate the emergence of this photon-mediated, cooperative, many-body state in a very unlikely system: an ultradense electron-hole plasma in a semiconductor. We observe intense, delayed pulses, or bursts, of coherent radiation from highly photo-excited semiconductor quantum wells with a concomitant sudden decrease in population from total inversion to zero. Unlike previously reported SF in atomic and molecular systems that occur on nanosecond time scales, these intense SF bursts have picosecond pulse-widths and are delayed in time by tens of picoseconds with respect to the excitation pulse. They appear only at sufficiently high excitation powers and magnetic fields and sufficiently low temperatures - where various interactions causing decoherence are suppressed. We present theoretical simulations based on the relaxation and recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing magnetic field, which successfully capture the salient features of the experimental observations.Comment: 21 pages, 4 figure

    Image-level harmonization of multi-site data using image-and-spatial transformer networks

    Get PDF
    We investigate the use of image-and-spatial transformer networks (ISTNs) to tackle domain shift in multi-site medical imaging data. Commonly, domain adaptation (DA) is performed with little regard for explainability of the inter-domain transformation and is often conducted at the feature-level in the latent space. We employ ISTNs for DA at the image-level which constrains transformations to explainable appearance and shape changes. As proof-of-concept we demonstrate that ISTNs can be trained adversarially on a classification problem with simulated 2D data. For real-data validation, we construct two 3D brain MRI datasets from the Cam-CAN and UK Biobank studies to investigate domain shift due to acquisition and population differences. We show that age regression and sex classification models trained on ISTN output improve generalization when training on data from one and testing on the other site

    Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity

    Get PDF
    MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors

    Bioavailability of iodine in the UK-Peak District environment and its human bioaccessibility: an assessment of the causes of historical goitre in this area

    Get PDF
    Iodine is an essential micronutrient for human health. Its deficiency causes a number of functional and developmental abnormalities such as goitre. The limestone region of Derbyshire, UK was goitre-endemic until it declined from the 1930s and the reason for this has escaped a conclusive explanation. The present study investigates the cause(s) of goitre in the UK-Peak District area through an assessment of iodine in terms of its environmental mobility, bioavailability, uptake into the food chain and human bioaccessibility. The goitre-endemic limestone area is compared with the background millstone grit area of the UK-Peak District. The findings of this study show that ‘total’ environmental iodine is not linked to goitre in the limestone area, but the governing factors include iodine mobility, bioavailability and bioaccessibility. Compared with the millstone grit area, higher soil pH and calcium content of the limestone area restrict iodine mobility in this area, also soil organic carbon in the limestone area is influential in binding the iodine to the soil. Higher calcium content in the limestone area is an important factor in terms of strongly fixing the iodine to the soil. Higher iodine bioaccessibility in the millstone grit than the limestone area suggests that its oral bioaccessibility is restricted in the limestone area. Iodine taken up by plant roots is transported freely into the aerial plant parts in the millstone grit area unlike the limestone area, thus providing higher iodine into the human food chain in the millstone grit area through grazing animals unlike the goitre-prevalent limestone area

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Valorizing the Human Capital Within Organizations : A Competency Based Approach

    Get PDF
    Changes in the business environment and in the nature of work itself require the implementation of integrated and flexible methodologies in competencies’ definition in order to valorize the human capital and achieve organizational targets in a future-oriented perspective. However, extant research suggests that the available approaches to competency definition are more focused on describing past behaviors than on anticipating future requirements. Therefore, this study endeavors to provide a competency-based model that supports the top management in the identification of the competencies employees should posses, highlighting crucial competencies that can translate the strategy and vision of the organization into behaviors, skills, and terms that people can easily understand and implement. The results of our explorative case study led us to identify a set of competencies (digital/analytical/technical/adaptive/combinative/proactive), classified following the Knowledge Skills Attitudes (KSA) model, that collectively lead to a successful definition of future-oriented competencies.© 2019 Springer. This is a post-peer-review, pre-copyedit version of an article published in Advances in Human Factors, Business Management and Society. AHFE 2018. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-94709-9_6fi=vertaisarvioitu|en=peerReviewed

    Endothelium Derived Nitric Oxide Synthase Negatively Regulates the PDGF-Survivin Pathway during Flow-Dependent Vascular Remodeling

    Get PDF
    Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (−/−)) is associated with activation of the platelet derived growth factor (PDGF) signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (−/−) mice. Moreover, nitric oxide (NO) negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence
    • …
    corecore