572 research outputs found

    Stabilization of the Yang-Mills chaos in non-Abelian Born-Infeld theory

    Full text link
    We investigate dynamics of the homogeneous time-dependent SU(2) Yang-Mills fields governed by the non-Abelian Born-Infeld lagrangian which arises in superstring theory as a result of summation of all orders in the string slope parameter α′\alpha'. It is shown that generically the Born-Infeld dynamics is less chaotic than that in the ordinary Yang-Mills theory, and at high enough field strength the Yang-Mills chaos is stabilized. More generally, a smothering effect of the string non-locality on behavior of classical fields is conjectured.Comment: 7 pages, 5 figure

    Accelerating cycle expansions by dynamical conjugacy

    Full text link
    Periodic orbit theory provides two important functions---the dynamical zeta function and the spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down in the presence of non-hyperbolicity. We find that the slow convergence can be associated with singularities in the natural measure. A properly designed coordinate transformation may remove these singularities and results in a dynamically conjugate system where fast convergence is restored. The technique is successfully demonstrated on several examples of one-dimensional maps and some remaining challenges are discussed

    Arnol'd Tongues and Quantum Accelerator Modes

    Full text link
    The stable periodic orbits of an area-preserving map on the 2-torus, which is formally a variant of the Standard Map, have been shown to explain the quantum accelerator modes that were discovered in experiments with laser-cooled atoms. We show that their parametric dependence exhibits Arnol'd-like tongues and perform a perturbative analysis of such structures. We thus explain the arithmetical organisation of the accelerator modes and discuss experimental implications thereof.Comment: 20 pages, 6 encapsulated postscript figure

    Signatures of Classical Periodic Orbits on a Smooth Quantum System

    Full text link
    Gutzwiller's trace formula and Bogomolny's formula are applied to a non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic oscillator. These semiclassical theories reproduce well the exact quantal results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb

    Periodic orbit spectrum in terms of Ruelle--Pollicott resonances

    Full text link
    Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g. a trajectory ``p'' returns to its initial conditions after some fixed time tau_p. Our aim is to investigate the spectrum tau_1, tau_2, ... of periods of the periodic orbits. An explicit formula for the density rho(tau) = sum_p delta (tau - tau_p) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle--Pollicott resonances). For large periods, corrections to the well--known exponential growth of the smooth part of the density are obtained. An alternative formula for rho(tau) in terms of the zeros and poles of the Ruelle zeta function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random matrix theory and discrete maps are also considered. In particular, a random matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases I: Equilibrium Systems

    Full text link
    We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a dilute, random array of hard disk or hard sphere scatterers - i.e. the dilute Lorentz gas model. This is carried out in two ways: First we use simple kinetic theory arguments to compute the Lyapunov spectrum for both two and three dimensional systems. In order to provide a method that can easily be generalized to non-uniform systems we then use a method based upon extensions of the Lorentz-Boltzmann (LB) equation to include variables that characterize the chaotic behavior of the system. The extended LB equations depend upon the number of dimensions and on whether one is computing positive or negative Lyapunov exponents. In the latter case the extended LB equation is closely related to an "anti-Lorentz-Boltzmann equation" where the collision operator has the opposite sign from the ordinary LB equation. Finally we compare our results with computer simulations of Dellago and Posch and find very good agreement.Comment: 48 pages, 3 ps fig

    On the rate of quantum ergodicity in Euclidean billiards

    Full text link
    For a large class of quantized ergodic flows the quantum ergodicity theorem due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost all eigenfunctions become equidistributed in the semiclassical limit. In this work we first give a short introduction to the formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case of ergodic systems. Of great importance is the rate by which the quantum mechanical expectation values of an observable tend to their mean value. This is studied numerically for three Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum ergodicity is strongly influenced by localized eigenfunctions like bouncing ball modes or scarred eigenfunctions. We give a detailed discussion and explanation of these effects using a simple but powerful model. For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably normalized fluctuations of the expectation values around their mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A version with all figures can be obtained from http://www.physik.uni-ulm.de/theo/qc/ (File: http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any problems contact Arnd B\"acker (e-mail: [email protected]) or Roman Schubert (e-mail: [email protected]

    How Chaotic is the Stadium Billiard? A Semiclassical Analysis

    Full text link
    The impression gained from the literature published to date is that the spectrum of the stadium billiard can be adequately described, semiclassically, by the Gutzwiller periodic orbit trace formula together with a modified treatment of the marginally stable family of bouncing ball orbits. I show that this belief is erroneous. The Gutzwiller trace formula is not applicable for the phase space dynamics near the bouncing ball orbits. Unstable periodic orbits close to the marginally stable family in phase space cannot be treated as isolated stationary phase points when approximating the trace of the Green function. Semiclassical contributions to the trace show an â„Ź\hbar - dependent transition from hard chaos to integrable behavior for trajectories approaching the bouncing ball orbits. A whole region in phase space surrounding the marginal stable family acts, semiclassically, like a stable island with boundaries being explicitly â„Ź\hbar-dependent. The localized bouncing ball states found in the billiard derive from this semiclassically stable island. The bouncing ball orbits themselves, however, do not contribute to individual eigenvalues in the spectrum. An EBK-like quantization of the regular bouncing ball eigenstates in the stadium can be derived. The stadium billiard is thus an ideal model for studying the influence of almost regular dynamics near marginally stable boundaries on quantum mechanics.Comment: 27 pages, 6 figures, submitted to J. Phys.

    On the canonically invariant calculation of Maslov indices

    Get PDF
    After a short review of various ways to calculate the Maslov index appearing in semiclassical Gutzwiller type trace formulae, we discuss a coordinate-independent and canonically invariant formulation recently proposed by A Sugita (2000, 2001). We give explicit formulae for its ingredients and test them numerically for periodic orbits in several Hamiltonian systems with mixed dynamics. We demonstrate how the Maslov indices and their ingredients can be useful in the classification of periodic orbits in complicated bifurcation scenarios, for instance in a novel sequence of seven orbits born out of a tangent bifurcation in the H\'enon-Heiles system.Comment: LaTeX, 13 figures, 3 tables, submitted to J. Phys.
    • …
    corecore